Implicit function
In mathematics, an implicit equation is a relation of the form R(x_{1}, …, x_{n}) = 0, where R is a function of several variables (often a polynomial). For example, the implicit equation of the unit circle is x^{2} + y^{2} − 1 = 0.
Part of a series of articles about 
Calculus 


An implicit function is a function that is defined by an implicit equation, that relates one of the variables, considered as the value of the function, with the others considered as the arguments.[1]^{:204–206} For example, the equation x^{2} + y^{2} − 1 = 0 of the unit circle defines y as an implicit function of x if −1 ≤ x ≤ 1, and one restricts y to nonnegative values.
The implicit function theorem provides conditions under which some kinds of relations define an implicit function, namely relations defined as the indicator function of the zero set of some continuously differentiable multivariate function.
Examples
Inverse functions
A common type of implicit function is an inverse function. Not all functions have a unique inverse function. If g is a function of x that has a unique inverse, then the inverse function of g, called g^{−1}, is the unique function giving a solution of the equation
for x in terms of y. This solution can then be written as
Defining g^{−1} as the inverse of g is an implicit definition. For some functions g, g^{−1}(y) can be written out explicitly as a closedform expression — for instance, if g(x) = 2x − 1, then g^{−1}(y) = 1/2(y + 1). However, this is often not possible, or only by introducing a new notation (as in the product log example below).
Intuitively, an inverse function is obtained from g by interchanging the roles of the dependent and independent variables.
Example: The product log is an implicit function giving the solution for x of the equation y − xe^{x} = 0.
Algebraic functions
An algebraic function is a function that satisfies a polynomial equation whose coefficients are themselves polynomials. For example, an algebraic function in one variable x gives a solution for y of an equation
where the coefficients a_{i}(x) are polynomial functions of x. This algebraic function can be written as the right side of the solution equation y = f(x). Written like this, f is a multivalued implicit function.
Algebraic functions play an important role in mathematical analysis and algebraic geometry. A simple example of an algebraic function is given by the left side of the unit circle equation:
Solving for y gives an explicit solution:
But even without specifying this explicit solution, it is possible to refer to the implicit solution of the unit circle equation as y = f(x), where f is the multivalued implicit function.
While explicit solutions can be found for equations that are quadratic, cubic, and quartic in y, the same is not in general true for quintic and higher degree equations, such as
Nevertheless, one can still refer to the implicit solution y = f(x) involving the multivalued implicit function f.
Caveats
Not every equation R(x, y) = 0 implies a graph of a singlevalued function, the circle equation being one prominent example. Another example is an implicit function given by x − C(y) = 0 where C is a cubic polynomial having a "hump" in its graph. Thus, for an implicit function to be a true (singlevalued) function it might be necessary to use just part of the graph. An implicit function can sometimes be successfully defined as a true function only after "zooming in" on some part of the xaxis and "cutting away" some unwanted function branches. Then an equation expressing y as an implicit function of the other variables can be written.
The defining equation R(x, y) = 0 can also have other pathologies. For example, the equation x = 0 does not imply a function f(x) giving solutions for y at all; it is a vertical line. In order to avoid a problem like this, various constraints are frequently imposed on the allowable sorts of equations or on the domain. The implicit function theorem provides a uniform way of handling these sorts of pathologies.
Implicit differentiation
In calculus, a method called implicit differentiation makes use of the chain rule to differentiate implicitly defined functions.
To differentiate an implicit function y(x), defined by an equation R(x, y) = 0, it is not generally possible to solve it explicitly for y and then differentiate. Instead, one can totally differentiate R(x, y) = 0 with respect to x and y and then solve the resulting linear equation for dy/dx to explicitly get the derivative in terms of x and y. Even when it is possible to explicitly solve the original equation, the formula resulting from total differentiation is, in general, much simpler and easier to use.
Example 1
Consider
This equation is easy to solve for y, giving
where the right side is the explicit form of the function y(x). Differentiation then gives dy/dx = −1.
Alternatively, one can totally differentiate the original equation:
Solving for dy/dx gives
the same answer as obtained previously.
Example 2
An example of an implicit function for which implicit differentiation is easier than using explicit differentiation is the function y(x) defined by the equation
To differentiate this explicitly with respect to x, one has first to get
and then differentiate this function. This creates two derivatives: one for y ≥ 0 and another for y < 0.
It is substantially easier to implicitly differentiate the original equation:
giving
Example 3
Often, it is difficult or impossible to solve explicitly for y, and implicit differentiation is the only feasible method of differentiation. An example is the equation
It is impossible to algebraically express y explicitly as a function of x, and therefore one cannot find dy/dx by explicit differentiation. Using the implicit method, dy/dx can be obtained by differentiating the equation to obtain
where dx/dx = 1. Factoring out dy/dx shows that
which yields the result
which is defined for
General formula for derivative of implicit function
If R(x, y) = 0, the derivative of the implicit function y(x) is given by[2]^{:§11.5}
where R_{x} and R_{y} indicate the partial derivatives of R with respect to x and y.
The above formula comes from using the generalized chain rule to obtain the total derivative — with respect to x — of both sides of R(x, y) = 0:
hence
which, when solved for dy/dx, gives the expression above.
Implicit function theorem
Let R(x, y) be a differentiable function of two variables, and (a, b) be a pair of real numbers such that R(a, b) = 0. If ∂R/∂y ≠ 0, then R(x, y) = 0 defines an implicit function that is differentiable in some small enough neighbourhood of (a, b); in other words, there is a differentiable function f that is defined and differentiable in some neighbourhood of a, such that R(x, f(x)) = 0 for x in this neighbourhood.
The condition ∂R/∂y ≠ 0 means that (a, b) is a regular point of the implicit curve of implicit equation R(x, y) = 0 where the tangent is not vertical.
In a less technical language, implicit functions exist and can be differentiated, if the curve has a nonvertical tangent.[2]^{:§11.5}
In algebraic geometry
Consider a relation of the form R(x_{1}, …, x_{n}) = 0, where R is a multivariable polynomial. The set of the values of the variables that satisfy this relation is called an implicit curve if n = 2 and an implicit surface if n = 3. The implicit equations are the basis of algebraic geometry, whose basic subjects of study are the simultaneous solutions of several implicit equations whose lefthand sides are polynomials. These sets of simultaneous solutions are called affine algebraic sets.
In differential equations
The solutions of differential equations generally appear expressed by an implicit function.[3]
Applications in economics
Marginal rate of substitution
In economics, when the level set R(x, y) = 0 is an indifference curve for the quantities x and y consumed of two goods, the absolute value of the implicit derivative dy/dx is interpreted as the marginal rate of substitution of the two goods: how much more of y one must receive in order to be indifferent to a loss of one unit of x.
Marginal rate of technical substitution
Similarly, sometimes the level set R(L, K) is an isoquant showing various combinations of utilized quantities L of labor and K of physical capital each of which would result in the production of the same given quantity of output of some good. In this case the absolute value of the implicit derivative dK/dL is interpreted as the marginal rate of technical substitution between the two factors of production: how much more capital the firm must use to produce the same amount of output with one less unit of labor.
Optimization
Often in economic theory, some function such as a utility function or a profit function is to be maximized with respect to a choice vector x even though the objective function has not been restricted to any specific functional form. The implicit function theorem guarantees that the firstorder conditions of the optimization define an implicit function for each element of the optimal vector x* of the choice vector x. When profit is being maximized, typically the resulting implicit functions are the labor demand function and the supply functions of various goods. When utility is being maximized, typically the resulting implicit functions are the labor supply function and the demand functions for various goods.
Moreover, the influence of the problem's parameters on x* — the partial derivatives of the implicit function — can be expressed as total derivatives of the system of firstorder conditions found using total differentiation.
See also
 Implicit curve
 Functional equation
 Level set
 Contour line
 Isosurface
 Marginal rate of substitution
 Implicit function theorem
 Logarithmic differentiation
 Polygonizer
 Related rates
References
 Chiang, Alpha C. (1984). Fundamental Methods of Mathematical Economics (Third ed.). New York: McGrawHill. ISBN 0070108137.
 Stewart, James (1998). Calculus Concepts And Contexts. Brooks/Cole Publishing Company. ISBN 0534343309.
 Kaplan, Wilfred (2003). Advanced Calculus. Boston: AddisonWesley. ISBN 0201799375.
Further reading
 Binmore, K. G. (1983). "Implicit Functions". Calculus. New York: Cambridge University Press. pp. 198–211. ISBN 0521289521.
 Rudin, Walter (1976). Principles of Mathematical Analysis. Boston: McGrawHill. pp. 223–228. ISBN 007054235X.
 Simon, Carl P.; Blume, Lawrence (1994). "Implicit Functions and Their Derivatives". Mathematics for Economists. New York: W. W. Norton. pp. 334–371. ISBN 0393957330.
External links
 "Implicit Differentiation, What's Going on Here?". 3Blue1Brown. Essence of Calculus. May 3, 2017 – via YouTube.