Green's theorem
In vector calculus, Green's theorem relates a line integral around a simple closed curve C to a double integral over the plane region D bounded by C. It is the twodimensional special case of Stokes' theorem.
Part of a series of articles about 
Calculus 


Theorem
Let C be a positively oriented, piecewise smooth, simple closed curve in a plane, and let D be the region bounded by C. If L and M are functions of (x, y) defined on an open region containing D and having continuous partial derivatives there, then
where the path of integration along C is anticlockwise.[1][2]
In physics, Green's theorem finds many applications. One is solving twodimensional flow integrals, stating that the sum of fluid outflowing from a volume is equal to the total outflow summed about an enclosing area. In plane geometry, and in particular, area surveying, Green's theorem can be used to determine the area and centroid of plane figures solely by integrating over the perimeter.
Proof when D is a simple region
The following is a proof of half of the theorem for the simplified area D, a type I region where C_{1} and C_{3} are curves connected by vertical lines (possibly of zero length). A similar proof exists for the other half of the theorem when D is a type II region where C_{2} and C_{4} are curves connected by horizontal lines (again, possibly of zero length). Putting these two parts together, the theorem is thus proven for regions of type III (defined as regions which are both type I and type II). The general case can then be deduced from this special case by decomposing D into a set of type III regions.
If it can be shown that if

(1)
and

(2)
are true, then Green's theorem follows immediately for the region D. We can prove (1) easily for regions of type I, and (2) for regions of type II. Green's theorem then follows for regions of type III.
Assume region D is a type I region and can thus be characterized, as pictured on the right, by
where g_{1} and g_{2} are continuous functions on [a, b]. Compute the double integral in (1):

(3)
Now compute the line integral in (1). C can be rewritten as the union of four curves: C_{1}, C_{2}, C_{3}, C_{4}.
With C_{1}, use the parametric equations: x = x, y = g_{1}(x), a ≤ x ≤ b. Then
With C_{3}, use the parametric equations: x = x, y = g_{2}(x), a ≤ x ≤ b. Then
The integral over C_{3} is negated because it goes in the negative direction from b to a, as C is oriented positively (anticlockwise). On C_{2} and C_{4}, x remains constant, meaning
Therefore,

(4)
Combining (3) with (4), we get (1) for regions of type I. A similar treatment yields (2) for regions of type II. Putting the two together, we get the result for regions of type III.
Proof for rectifiable Jordan curves
We are going to prove the following
Theorem. Let be a rectifiable, positively oriented Jordan curve in and let denote its inner region. Suppose that are continuous functions with the property that has second partial derivative at every point of , has first partial derivative at every point of and that the functions are Riemannintegrable over . Then
We need the following lemmas whose proofs can be found in:[3]
Lemma 1 (Decomposition Lemma). Assume is a rectifiable, positively oriented Jordan curve in the plane and let be its inner region. For every positive real , let denote the collection of squares in the plane bounded by the lines , where runs through the set of integers. Then, for this , there exists a decomposition of into a finite number of nonoverlapping subregions in such a manner that
 Each one of the subregions contained in , say , is a square from .
 Each one of the remaining subregions, say , has as boundary a rectifiable Jordan curve formed by a finite number of arcs of and parts of the sides of some square from .
 Each one of the border regions can be enclosed in a square of edgelength .
 If is the positively oriented boundary curve of , then
 The number of border regions is no greater than , where is the length of .
Lemma 2. Let be a rectifiable curve in the plane and let be the set of points in the plane whose distance from (the range of) is at most . The outer Jordan content of this set satisfies .
Lemma 3. Let be a rectifiable curve in and let be a continuous function. Then
 and
 are where is the oscillation of on the range of .
Now we are in position to prove the Theorem:
Proof of Theorem. Let be an arbitrary positive real number. By continuity of , and compactness of , given , there exists such that whenever two points of are less than apart, their images under are less than apart. For this , consider the decomposition given by the previous Lemma. We have
Put .
For each , the curve is a positively oriented square, for which Green's formula holds. Hence
Every point of a border region is at a distance no greater than from . Thus, if is the union of all border regions, then ; hence , by Lemma 2. Notice that
This yields
We may as well choose so that the RHS of the last inequality is
The remark in the beginning of this proof implies that the oscillations of and on every border region is at most . We have
By Lemma 1(iii),
Combining these, we finally get
for some . Since this is true for every , we are done.
Validity under different hypotheses
The hypothesis of the last theorem are not the only ones under which Green's formula is true. Another common set of conditions is the following:
The functions are still assumed to be continuous. However, we now require them to be Fréchetdifferentiable at every point of . This implies the existence of all directional derivatives, in particular , where, as usual, is the canonical ordered basis of . In addition, we require the function to be Riemannintegrable over .
As a corollary of this, we get the Cauchy Integral Theorem for rectifiable Jordan curves:
Theorem (Cauchy). If is a rectifiable Jordan curve in and if is a continuous mapping holomorphic throughout the inner region of , then
the integral being a complex contour integral.
Proof. We regard the complex plane as . Now, define to be such that These functions are clearly continuous. It is well known that and are Fréchetdifferentiable and that they satisfy the CauchyRiemann equations: .
Now, analyzing the sums used to define the complex contour integral in question, it is easy to realize that
the integrals on the RHS being usual line integrals. These remarks allow us to apply Green's Theorem to each one of these line integrals, finishing the proof.
Multiplyconnected regions
Theorem. Let be positively oriented rectifiable Jordan curves in satisfying
where is the inner region of . Let
Suppose and are continuous functions whose restriction to is Fréchetdifferentiable. If the function
is Riemannintegrable over , then
Relationship to Stokes' theorem
Green's theorem is a special case of the Kelvin–Stokes theorem, when applied to a region in the plane.
We can augment the twodimensional field into a threedimensional field with a z component that is always 0. Write F for the vectorvalued function . Start with the left side of Green's theorem:
The Kelvin–Stokes theorem:
The surface is just the region in the plane , with the unit normal defined (by convention) to have a positive z component in order to match the "positive orientation" definitions for both theorems.
The expression inside the integral becomes
Thus we get the right side of Green's theorem
Green's theorem is also a straightforward result of the general Stokes' theorem using differential forms and exterior derivatives:
Relationship to the divergence theorem
Considering only twodimensional vector fields, Green's theorem is equivalent to the twodimensional version of the divergence theorem:
where is the divergence on the twodimensional vector field , and is the outwardpointing unit normal vector on the boundary.
To see this, consider the unit normal in the right side of the equation. Since in Green's theorem is a vector pointing tangential along the curve, and the curve C is the positively oriented (i.e. anticlockwise) curve along the boundary, an outward normal would be a vector which points 90° to the right of this; one choice would be . The length of this vector is So
Start with the left side of Green's theorem:
Applying the twodimensional divergence theorem with , we get the right side of Green's theorem:
Area calculation
Green's theorem can be used to compute area by line integral.[4] The area of a planar region is given by
Choose and such that , the area is given by
Possible formulas for the area of include[4]
History
It is named after George Green, who stated a similar result in an 1828 paper titled An Essay on the Application of Mathematical Analysis to the Theories of Electricity and Magnetism. In 1846, AugustinLouis Cauchy published a paper stating Green's theorem as the penultimate sentence. This is in fact the first printed version of Green's theorem in the form appearing in modern textbooks. Bernhard Riemann gave the first proof of Green's theorem in his doctoral dissertation on the theory of functions of a complex variable.[5][6]
See also
 Planimeter – Tool for measuring area.
 Method of image charges – A method used in electrostatics that takes advantage of the uniqueness theorem (derived from Green's theorem)
 Shoelace formula – A special case of Green's theorem for simple polygons
References
 Riley, K. F.; Hobson, M. P.; Bence, S. J. (2010). Mathematical Methods for Physics and Engineering. Cambridge University Press. ISBN 9780521861533.
 Spiegel, M. R.; Lipschutz, S.; Spellman, D. (2009). Vector Analysis. Schaum’s Outlines (2nd ed.). McGraw Hill. ISBN 9780071615457.
 Apostol, Tom (1960). Mathematical Analysis (1 ed.). Reading, Massachusetts, U.S.A.: AddisonWesley Publishing Company, INC.
 Stewart, James (1999). Calculus (6th ed.). Thomson, Brooks/Cole.
 George Green, An Essay on the Application of Mathematical Analysis to the Theories of Electricity and Magnetism (Nottingham, England: T. Wheelhouse, 1828). Green did not actually derive the form of "Green's theorem" which appears in this article; rather, he derived a form of the "divergence theorem", which appears on pages 10–12 of his Essay.
In 1846, the form of "Green's theorem" which appears in this article was first published, without proof, in an article by Augustin Cauchy: A. Cauchy (1846) "Sur les intégrales qui s'étendent à tous les points d'une courbe fermée" (On integrals that extend over all of the points of a closed curve), Comptes rendus, 23: 251–255. (The equation appears at the bottom of page 254, where (S) denotes the line integral of a function k along the curve s that encloses the area S.)
A proof of the theorem was finally provided in 1851 by Bernhard Riemann in his inaugural dissertation: Bernhard Riemann (1851) Grundlagen für eine allgemeine Theorie der Functionen einer veränderlichen complexen Grösse (Basis for a general theory of functions of a variable complex quantity), (Göttingen, (Germany): Adalbert Rente, 1867); see pages 8–9.  Katz, Victor (2009). "22.3.3: Complex Functions and Line Integrals". A History of Mathematics: An Introduction. AddisonWesley. pp. 801–5. ISBN 0321387007.
Further reading
 Marsden, Jerrold E.; Tromba, Anthony J. (2003). "The Integral Theorems of Vector Analysis". Vector Calculus (Fifth ed.). New York: Freeman. pp. 518–608. ISBN 0716749920.