Doubleslit experiment
In modern physics, the doubleslit experiment is a demonstration that light and matter can display characteristics of both classically defined waves and particles; moreover, it displays the fundamentally probabilistic nature of quantum mechanical phenomena. This type of experiment was first performed, using light, by Thomas Young in 1801, as a demonstration of the wave behavior of light.[1] At that time it was thought that light consisted of either waves or particles. With the beginning of modern physics, about a hundred years later, it was realized that light could in fact show behavior characteristic of both waves and particles. In 1927, Davisson and Germer demonstrated that electrons show the same behavior, which was later extended to atoms and molecules.[2][3] Thomas Young's experiment with light was part of classical physics long before the development of quantum mechanics and the concept of waveparticle duality. He believed it demonstrated that the wave theory of light was correct, and his experiment is sometimes referred to as Young's experiment[4] or Young's slits.
The experiment belongs to a general class of "double path" experiments, in which a wave is split into two separate waves that later combine into a single wave. Changes in the pathlengths of both waves result in a phase shift, creating an interference pattern. Another version is the Mach–Zehnder interferometer, which splits the beam with a beam splitter.
Part of a series of articles about 
Quantum mechanics 


In the basic version of this experiment, a coherent light source, such as a laser beam, illuminates a plate pierced by two parallel slits, and the light passing through the slits is observed on a screen behind the plate.[5][6] The wave nature of light causes the light waves passing through the two slits to interfere, producing bright and dark bands on the screen – a result that would not be expected if light consisted of classical particles.[5][7] However, the light is always found to be absorbed at the screen at discrete points, as individual particles (not waves); the interference pattern appears via the varying density of these particle hits on the screen.[8] Furthermore, versions of the experiment that include detectors at the slits find that each detected photon passes through one slit (as would a classical particle), and not through both slits (as would a wave).[9][10][11][12][13] However, such experiments demonstrate that particles do not form the interference pattern if one detects which slit they pass through. These results demonstrate the principle of wave–particle duality.[14][15]
Other atomicscale entities, such as electrons, are found to exhibit the same behavior when fired towards a double slit.[6] Additionally, the detection of individual discrete impacts is observed to be inherently probabilistic, which is inexplicable using classical mechanics.[6]
The experiment can be done with entities much larger than electrons and photons, although it becomes more difficult as size increases. The largest entities for which the doubleslit experiment has been performed were molecules that each comprised 2000 atoms (whose total mass was 25,000 atomic mass units).[16]
The doubleslit experiment (and its variations) has become a classic for its clarity in expressing the central puzzles of quantum mechanics. Because it demonstrates the fundamental limitation of the ability of the observer to predict experimental results, Richard Feynman called it "a phenomenon which is impossible […] to explain in any classical way, and which has in it the heart of quantum mechanics. In reality, it contains the only mystery [of quantum mechanics]."[6]
Overview
If light consisted strictly of ordinary or classical particles, and these particles were fired in a straight line through a slit and allowed to strike a screen on the other side, we would expect to see a pattern corresponding to the size and shape of the slit. However, when this "singleslit experiment" is actually performed, the pattern on the screen is a diffraction pattern in which the light is spread out. The smaller the slit, the greater the angle of spread. The top portion of the image shows the central portion of the pattern formed when a red laser illuminates a slit and, if one looks carefully, two faint side bands. More bands can be seen with a more highly refined apparatus. Diffraction explains the pattern as being the result of the interference of light waves from the slit.
If one illuminates two parallel slits, the light from the two slits again interferes. Here the interference is a more pronounced pattern with a series of alternating light and dark bands. The width of the bands is a property of the frequency of the illuminating light.[17] (See the bottom photograph to the right.) When Thomas Young (1773–1829) first demonstrated this phenomenon, it indicated that light consists of waves, as the distribution of brightness can be explained by the alternately additive and subtractive interference of wavefronts.[6] Young's experiment, performed in the early 1800s, played a crucial role in the understanding of the wave theory of light, vanquishing the corpuscular theory of light proposed by Isaac Newton, which had been the accepted model of light propagation in the 17th and 18th centuries. However, the later discovery of the photoelectric effect demonstrated that under different circumstances, light can behave as if it is composed of discrete particles. These seemingly contradictory discoveries made it necessary to go beyond classical physics and take the quantum nature of light into account.
Feynman was fond of saying that all of quantum mechanics can be gleaned from carefully thinking through the implications of this single experiment.[18] He also proposed (as a thought experiment) that if detectors were placed before each slit, the interference pattern would disappear.[19]
The Englert–Greenberger duality relation provides a detailed treatment of the mathematics of doubleslit interference in the context of quantum mechanics.
A lowintensity doubleslit experiment was first performed by G. I. Taylor in 1909,[20] by reducing the level of incident light until photon emission/absorption events were mostly nonoverlapping. A doubleslit experiment was not performed with anything other than light until 1961, when Claus Jönsson of the University of Tübingen performed it with electron beams.[21][22] In 1974, the Italian physicists Pier Giorgio Merli, Gian Franco Missiroli, and Giulio Pozzi repeated the experiment using single electrons and biprism (instead of slits), showing that each electron interferes with itself as predicted by quantum theory.[23][24] In 2002, the singleelectron version of the experiment was voted "the most beautiful experiment" by readers of Physics World.[25]
In 2012, Stefano Frabboni and coworkers eventually performed the doubleslit experiment with electrons and real slits, following the original scheme proposed by Feynman. They sent single electrons onto nanofabricated slits (about 100 nm wide) and, by collecting the transmitted electrons with a singleelectron detector, they could show the buildup of a doubleslit interference pattern.[26]
In 2019, single particle interference was demonstrated for antimatter by Marco Giammarchi and coworkers.[27]
Variations of the experiment
Interference of individual particles
An important version of this experiment involves single particles. Sending particles through a doubleslit apparatus one at a time results in single particles appearing on the screen, as expected. Remarkably, however, an interference pattern emerges when these particles are allowed to build up one by one (see the adjacent image). This demonstrates the wave–particle duality, which states that all matter exhibits both wave and particle properties: the particle is measured as a single pulse at a single position, while the wave describes the probability of absorbing the particle at a specific place on the screen.[28] This phenomenon has been shown to occur with photons, electrons, atoms and even some molecules, including buckyballs.[29][30][31][32][33]
The probability of detection is the square of the amplitude of the wave and can be calculated with classical waves (see below). Ever since the origination of quantum mechanics, some theorists have searched for ways to incorporate additional determinants or "hidden variables" that, were they to become known, would account for the location of each individual impact with the target.[34]
MachZehnder interferometer
The Mach–Zehnder interferometer can be seen as a simplified version of the doubleslit experiment. Instead of propagating through free space after the two slits, and hitting any position in an extended screen, in the interferometer the photons can only propagate via two paths, and hit two discrete photodetectors. This makes it possible to describe it via simple linear algebra in dimension 2, rather than differential equations.
A photon emitted by the laser hits the first beam splitter and is then in a superposition between the two possible paths. In the second beam splitter these paths interfere, causing the photon to hit the photodetector on the right with probability one, and the photodetector on the bottom with probability zero. It is interesting to consider what would happen if the photon were definitely in either of paths between the beam splitters. This can be accomplished by blocking one of the paths, or equivalently by detecting the presence of a photon there. In both cases there will be no interference between the paths anymore, and both photodetectors will be hit with probability 1/2. From this we can conclude that the photon does not take one path or another after the first beam splitter, but rather that it is in a genuine quantum superposition of the two paths.[35]
"Whichway" experiments and the principle of complementarity
A wellknown thought experiment predicts that if particle detectors are positioned at the slits, showing through which slit a photon goes, the interference pattern will disappear.[6] This whichway experiment illustrates the complementarity principle that photons can behave as either particles or waves, but cannot be observed as both at the same time.[36][37][38] Despite the importance of this thought experiment in the history of quantum mechanics (for example, see the discussion on Einstein's version of this experiment), technically feasible realizations of this experiment were not proposed until the 1970s.[39] (Naive implementations of the textbook thought experiment are not possible because photons cannot be detected without absorbing the photon.) Currently, multiple experiments have been performed illustrating various aspects of complementarity.[40]
An experiment performed in 1987[41][42] produced results that demonstrated that information could be obtained regarding which path a particle had taken without destroying the interference altogether. This showed the effect of measurements that disturbed the particles in transit to a lesser degree and thereby influenced the interference pattern only to a comparable extent. In other words, if one does not insist that the method used to determine which slit each photon passes through be completely reliable, one can still detect a (degraded) interference pattern.[43]
Delayed choice and quantum eraser variations
Wheeler's delayed choice experiments demonstrate that extracting "which path" information after a particle passes through the slits can seem to retroactively alter its previous behavior at the slits.
Quantum eraser experiments demonstrate that wave behavior can be restored by erasing or otherwise making permanently unavailable the "which path" information.
A simple doitathome illustration of the quantum eraser phenomenon was given in an article in Scientific American.[44] If one sets polarizers before each slit with their axes orthogonal to each other, the interference pattern will be eliminated. The polarizers can be considered as introducing whichpath information to each beam. Introducing a third polarizer in front of the detector with an axis of 45° relative to the other polarizers "erases" this information, allowing the interference pattern to reappear. This can also be accounted for by considering the light to be a classical wave,[44]^{:91} and also when using circular polarizers and single photons.[45]^{:6} Implementations of the polarizers using entangled photon pairs have no classical explanation.[45]
Weak measurement
In a highly publicized experiment in 2012, researchers claimed to have identified the path each particle had taken without any adverse effects at all on the interference pattern generated by the particles.[46] In order to do this, they used a setup such that particles coming to the screen were not from a pointlike source, but from a source with two intensity maxima. However, commentators such as Svensson[47] have pointed out that there is in fact no conflict between the weak measurements performed in this variant of the doubleslit experiment and the Heisenberg uncertainty principle. Weak measurement followed by postselection did not allow simultaneous position and momentum measurements for each individual particle, but rather allowed measurement of the average trajectory of the particles that arrived at different positions. In other words, the experimenters were creating a statistical map of the full trajectory landscape.[47]
Other variations
In 1967, Pfleegor and Mandel demonstrated twosource interference using two separate lasers as light sources.[48][49]
It was shown experimentally in 1972 that in a doubleslit system where only one slit was open at any time, interference was nonetheless observed provided the path difference was such that the detected photon could have come from either slit.[50][51] The experimental conditions were such that the photon density in the system was much less than unity.
In 1999, a quantum interference experiment (using a diffraction grating, rather than two slits) was successfully performed with buckyball molecules (each of which comprises 60 carbon atoms).[30][52] A buckyball is large enough (diameter about 0.7 nm, nearly half a million times larger than a proton) to be seen under an electron microscope.
In 2005, E. R. Eliel presented an experimental and theoretical study of the optical transmission of a thin metal screen perforated by two subwavelength slits, separated by many optical wavelengths. The total intensity of the farfield doubleslit pattern is shown to be reduced or enhanced as a function of the wavelength of the incident light beam.[53]
In 2012, researchers at the University of Nebraska–Lincoln performed the doubleslit experiment with electrons as described by Richard Feynman, using new instruments that allowed control of the transmission of the two slits and the monitoring of singleelectron detection events. Electrons were fired by an electron gun and passed through one or two slits of 62 nm wide × 4 μm tall.[54]
In 2013, a quantum interference experiment (using diffraction gratings, rather than two slits) was successfully performed with molecules that each comprised 810 atoms (whose total mass was over 10,000 atomic mass units).[2][3] The record was raised to 2000 atoms (25,000 amu) in 2019.[55]
Hydrodynamic pilot wave analogs
Hydrodynamic analogs have been developed that can recreate various aspects of quantum mechanical systems, including singleparticle interference through a doubleslit.[56] A silicone oil droplet, bouncing along the surface of a liquid, selfpropels via resonant interactions with its own wave field. The droplet gently sloshes the liquid with every bounce. At the same time, ripples from past bounces affect its course. The droplet's interaction with its own ripples, which form what is known as a pilot wave, causes it to exhibit behaviors previously thought to be peculiar to elementary particles – including behaviors customarily taken as evidence that elementary particles are spread through space like waves, without any specific location, until they are measured.[57][58]
Behaviors mimicked via this hydrodynamic pilotwave system include quantum single particle diffraction,[59] tunneling, quantized orbits, orbital level splitting, spin, and multimodal statistics. It is also possible to infer uncertainty relations and exclusion principles. Videos are available illustrating various features of this system. (See the External links.)
However, more complicated systems that involve two or more particles in superposition are not amenable to such a simple, classically intuitive explanation.[60] Accordingly, no hydrodynamic analog of entanglement has been developed.[56] Nevertheless, optical analogs are possible.[61]
Classical waveoptics formulation
Much of the behaviour of light can be modelled using classical wave theory. The Huygens–Fresnel principle is one such model; it states that each point on a wavefront generates a secondary wavelet, and that the disturbance at any subsequent point can be found by summing the contributions of the individual wavelets at that point. This summation needs to take into account the phase as well as the amplitude of the individual wavelets. Only the intensity of a light field can be measured—this is proportional to the square of the amplitude.
In the doubleslit experiment, the two slits are illuminated by a single laser beam. If the width of the slits is small enough (less than the wavelength of the laser light), the slits diffract the light into cylindrical waves. These two cylindrical wavefronts are superimposed, and the amplitude, and therefore the intensity, at any point in the combined wavefronts depends on both the magnitude and the phase of the two wavefronts. The difference in phase between the two waves is determined by the difference in the distance travelled by the two waves.
If the viewing distance is large compared with the separation of the slits (the far field), the phase difference can be found using the geometry shown in the figure below right. The path difference between two waves travelling at an angle θ is given by:
Where d is the distance between the two slits. When the two waves are in phase, i.e. the path difference is equal to an integral number of wavelengths, the summed amplitude, and therefore the summed intensity is maximum, and when they are in antiphase, i.e. the path difference is equal to half a wavelength, one and a half wavelengths, etc., then the two waves cancel and the summed intensity is zero. This effect is known as interference. The interference fringe maxima occur at angles
where λ is the wavelength of the light. The angular spacing of the fringes, θ_{f}, is given by
The spacing of the fringes at a distance z from the slits is given by
For example, if two slits are separated by 0.5 mm (d), and are illuminated with a 0.6μm wavelength laser (λ), then at a distance of 1m (z), the spacing of the fringes will be 1.2 mm.
If the width of the slits b is greater than the wavelength, the Fraunhofer diffraction equation gives the intensity of the diffracted light as:[62]
Where the sinc function is defined as sinc(x) = sin(x)/x for x ≠ 0, and sinc(0) = 1.
This is illustrated in the figure above, where the first pattern is the diffraction pattern of a single slit, given by the sinc function in this equation, and the second figure shows the combined intensity of the light diffracted from the two slits, where the cos function represents the fine structure, and the coarser structure represents diffraction by the individual slits as described by the sinc function.
Similar calculations for the near field can be done using the Fresnel diffraction equation. As the plane of observation gets closer to the plane in which the slits are located, the diffraction patterns associated with each slit decrease in size, so that the area in which interference occurs is reduced, and may vanish altogether when there is no overlap in the two diffracted patterns.[63]
Interpretations of the experiment
Like the Schrödinger's cat thought experiment, the doubleslit experiment is often used to highlight the differences and similarities between the various interpretations of quantum mechanics.
Copenhagen interpretation
The Copenhagen interpretation, put forth by some of the pioneers in the field of quantum mechanics, asserts that it is undesirable to posit anything that goes beyond the mathematical formulae and the kinds of physical apparatus and reactions that enable us to gain some knowledge of what goes on at the atomic scale. One of the mathematical constructs that enables experimenters to predict very accurately certain experimental results is sometimes called a probability wave. In its mathematical form it is analogous to the description of a physical wave, but its "crests" and "troughs" indicate levels of probability for the occurrence of certain phenomena (e.g., a spark of light at a certain point on a detector screen) that can be observed in the macro world of ordinary human experience.
The probability "wave" can be said to "pass through space" because the probability values that one can compute from its mathematical representation are dependent on time. One cannot speak of the location of any particle such as a photon between the time it is emitted and the time it is detected simply because in order to say that something is located somewhere at a certain time one has to detect it. The requirement for the eventual appearance of an interference pattern is that particles be emitted, and that there be a screen with at least two distinct paths for the particle to take from the emitter to the detection screen. Experiments observe nothing whatsoever between the time of emission of the particle and its arrival at the detection screen. If a ray tracing is next made as if a light wave (as understood in classical physics) is wide enough to take both paths, then that ray tracing will accurately predict the appearance of maxima and minima on the detector screen when many particles pass through the apparatus and gradually "paint" the expected interference pattern.
Pathintegral formulation
The Copenhagen interpretation is similar to the path integral formulation of quantum mechanics provided by Feynman. The path integral formulation replaces the classical notion of a single, unique trajectory for a system, with a sum over all possible trajectories. The trajectories are added together by using functional integration.
Each path is considered equally likely, and thus contributes the same amount. However, the phase of this contribution at any given point along the path is determined by the action along the path:
All these contributions are then added together, and the magnitude of the final result is squared, to get the probability distribution for the position of a particle:
As is always the case when calculating probability, the results must then be normalized by imposing:
To summarize, the probability distribution of the outcome is the normalized square of the norm of the superposition, over all paths from the point of origin to the final point, of waves propagating proportionally to the action along each path. The differences in the cumulative action along the different paths (and thus the relative phases of the contributions) produces the interference pattern observed by the doubleslit experiment. Feynman stressed that his formulation is merely a mathematical description, not an attempt to describe a real process that we can measure.
Relational interpretation
According to the relational interpretation of quantum mechanics, first proposed by Carlo Rovelli,[64] observations such as those in the doubleslit experiment result specifically from the interaction between the observer (measuring device) and the object being observed (physically interacted with), not any absolute property possessed by the object. In the case of an electron, if it is initially "observed" at a particular slit, then the observer–particle (photon–electron) interaction includes information about the electron's position. This partially constrains the particle's eventual location at the screen. If it is "observed" (measured with a photon) not at a particular slit but rather at the screen, then there is no "which path" information as part of the interaction, so the electron's "observed" position on the screen is determined strictly by its probability function. This makes the resulting pattern on the screen the same as if each individual electron had passed through both slits.
Manyworlds interpretation
Physicist David Deutsch argues in his book The Fabric of Reality that the doubleslit experiment is evidence for the manyworlds interpretation. However, since every interpretation of quantum mechanics is empirically indistinguishable, some scientists are skeptical of this claim.
De Broglie–Bohm theory
An alternative to the standard understanding of quantum mechanics, the De Broglie–Bohm theory states that particles also have precise locations at all times, and that their velocities are defined by the wavefunction. So while a single particle will travel through one particular slit in the doubleslit experiment, the socalled "pilot wave" that influences it will travel through both. The two slit de BroglieBohm trajectories were first calculated by Chris Dewdney while working with Chris Philippidis and Basil Hiley at Birkbeck College (London).[65] The de BroglieBohm theory produces the same statistical results as standard quantum mechanics, but dispenses with many of its conceptual difficulties.[66]
See also
 Complementarity (physics)
 Delayed choice quantum eraser
 Diffraction from slits
 Dualpolarization interferometry
 Elitzur–Vaidman bomb tester
 Nslit interferometer
 Photon polarization
 Quantum coherence
 Schrödinger's cat
 Young's interference experiment
 Measurement problem
References
 Young, Thomas. "The Bakerian lecture. Experiments and calculation relative to physical optics". Retrieved 14 July 2021.
 "Physicists Smash Record For WaveParticle Duality"
 Eibenberger, Sandra; et al. (2013). "Matterwave interference with particles selected from a molecular library with masses exceeding 10000 amu". Physical Chemistry Chemical Physics. 15 (35): 14696–14700. arXiv:1310.8343. Bibcode:2013PCCP...1514696E. doi:10.1039/C3CP51500A. PMID 23900710. S2CID 3944699.
 While there is no doubt that Young's demonstration of optical interference, using sunlight, pinholes and cards, played a vital part in the acceptance of the wave theory of light, there is some question as to whether he ever actually performed a doubleslit interference experiment.
 Robinson, Andrew (2006). The Last Man Who Knew Everything. New York, NY: Pi Press. pp. 123–124. ISBN 9780131343047.
 Lederman, Leon M.; Christopher T. Hill (2011). Quantum Physics for Poets. US: Prometheus Books. pp. 102–111. ISBN 9781616142810.
 Feynman, Richard P.; Robert B. Leighton; Matthew Sands (1965). The Feynman Lectures on Physics, Vol. 3. AddisonWesley. pp. 1.1–1.8. ISBN 9780201021189.
 Feynman, 1965, p. 1.5
 Darling, David (2007). "Wave–Particle Duality". The Internet Encyclopedia of Science. The Worlds of David Darling. Retrieved 18 October 2008.
 Feynman, 1965, p. 1.7
 Leon Lederman; Christopher T. Hill (27 September 2011). Quantum Physics for Poets. Prometheus Books, Publishers. p. 109. ISBN 9781616142810.
 "...if in a doubleslit experiment, the detectors which register outcoming photons are placed immediately behind the diaphragm with two slits: A photon is registered in one detector, not in both..." MüllerKirsten, H. J. W. (2006). Introduction to Quantum Mechanics: Schrödinger Equation and Path Integral. US: World Scientific. p. 14. ISBN 9789812566911.
 Plotnitsky, Arkady (2012). Niels Bohr and Complementarity: An Introduction. US: Springer. pp. 75–76. ISBN 9781461445173.
 "It seems that light passes through one slit or the other in the form of photons if we set up an experiment to detect which slit the photon passes, but passes through both slits in the form of a wave if we perform an interference experiment." Rae, Alastair I.M. (2004). Quantum Physics: Illusion Or Reality?. UK: Cambridge University Press. pp. 9–10. ISBN 9781139455275.
 Feynman, The Feynman Lectures on Physics, 3:Quantum Mechanics p.11 "There is one lucky break, however— electrons behave just like light.".
 See: Davisson–Germer experiment Davisson, C. J (1928). "The diffraction of electrons by a crystal of nickel". Bell System Technical Journal. 7: 90–105. doi:10.1002/j.15387305.1928.tb00342.x.
 Yaakov Y. Fein; Philipp Geyer; Patrick Zwick; Filip Kiałka; Sebastian Pedalino; Marcel Mayor; Stefan Gerlich; Markus Arndt (September 2019). "Quantum superposition of molecules beyond 25 kDa". Nature Physics. 15 (12): 1242–1245. Bibcode:2019NatPh..15.1242F. doi:10.1038/s4156701906639. S2CID 203638258.
 Charles Sanders Peirce first proposed the use of this effect as an artifactindependent reference standard for length
 C.S. Peirce (July 1879). "Note on the Progress of Experiments for Comparing a Wavelength with a Meter". American Journal of Science, as referenced by Crease, Robert P. (2011). World in the Balance: The historic quest for an absolute system of measurement. New York: W.W. Norton. p. 317. ISBN 9780393072983. p. 203.
 Greene, Brian (1999). The Elegant Universe: Super Strings, Hidden Dimensions, and the Quest for the Ultimate Theory. New York: W.W. Norton. pp. 97–109. ISBN 9780393046885.
 Feynman, 1965, chapter 3
 Sir Geoffrey, Ingram Taylor (1909). "Interference Fringes with Feeble Light". Prof. Cam. Phil. Soc. 15: 114.
 Jönsson, Claus (1 August 1961). "Elektroneninterferenzen an mehreren künstlich hergestellten Feinspalten". Zeitschrift für Physik (in German). 161 (4): 454–474. Bibcode:1961ZPhy..161..454J. doi:10.1007/BF01342460. ISSN 00443328. S2CID 121659705.
 Jönsson, Claus (1 January 1974). "Electron Diffraction at Multiple Slits". American Journal of Physics. 42 (1): 4–11. Bibcode:1974AmJPh..42....4J. doi:10.1119/1.1987592. ISSN 00029505.
 Merli, P G; Missiroli, G F; Pozzi, G (1976). "On the statistical aspect of electron interference phenomena". American Journal of Physics. 44 (3): 306–307. Bibcode:1976AmJPh..44..306M. doi:10.1119/1.10184.
 Rosa, R (2012). "The Merli–Missiroli–Pozzi TwoSlit ElectronInterference Experiment". Physics in Perspective. 14 (2): 178–194. Bibcode:2012PhP....14..178R. doi:10.1007/s0001601100790. PMC 4617474. PMID 26525832.
 "The most beautiful experiment". Physics World 2002  link is dead.
 Frabboni, Stefano; Gabrielli, Alessandro; Carlo Gazzadi, Gian; Giorgi, Filippo; Matteucci, Giorgio; Pozzi, Giulio; Cesari, Nicola Semprini; Villa, Mauro; Zoccoli, Antonio (May 2012). "The YoungFeynman twoslits experiment with single electrons: Buildup of the interference pattern and arrivaltime distribution using a fastreadout pixel detector". Ultramicroscopy. 116: 73–76. doi:10.1016/j.ultramic.2012.03.017. ISSN 03043991.
 Sala, S.; Ariga, A.; Ereditato, A.; Ferragut, R.; Giammarchi, M.; Leone, M.; Pistillo, C.; Scampoli, P. (2019). "First demonstration of antimatter wave interferometry". Science Advances. 5 (5): eaav7610. Bibcode:2019SciA....5.7610S. doi:10.1126/sciadv.aav7610. PMC 6499593. PMID 31058223.
 Greene, Brian (2007). The Fabric of the Cosmos: Space, Time, and the Texture of Reality. Random House LLC. p. 90. ISBN 9780307428530.
 Donati, O; Missiroli, G F; Pozzi, G (1973). "An Experiment on Electron Interference". American Journal of Physics. 41 (5): 639–644. Bibcode:1973AmJPh..41..639D. doi:10.1119/1.1987321.
 New Scientist: Quantum wonders: Corpuscles and buckyballs, 2010 (Introduction, subscription needed for full text, quoted in full in Archived 25 September 2017 at the Wayback Machine)
 Wave Particle Duality of C60 Archived 31 March 2012 at the Wayback Machine
 lNairz, Olaf; Brezger, Björn; Arndt, Markus; Anton Zeilinger, Abstract (2001). "Diffraction of Complex Molecules by Structures Made of Light". Phys. Rev. Lett. 87 (16): 160401. arXiv:quantph/0110012. Bibcode:2001PhRvL..87p0401N. doi:10.1103/physrevlett.87.160401. PMID 11690188. S2CID 21547361.
 Nairz, O; Arndt, M; Zeilinger, A (2003). "Quantum interference experiments with large molecules" (PDF). American Journal of Physics. 71 (4): 319–325. Bibcode:2003AmJPh..71..319N. doi:10.1119/1.1531580. Archived from the original (PDF) on 8 August 2017. Retrieved 4 June 2015.
 Greene, Brian (2004). The Fabric of the Cosmos: Space, Time, and the Texture of Reality. Knopf. pp. 204–213. Bibcode:2004fcst.book.....G. ISBN 9780375412882.
 Vedral, Vlatko (2006). Introduction to Quantum Information Science. Oxford University Press. ISBN 9780199215706. OCLC 442351498.
 Harrison, David (2002). "Complementarity and the Copenhagen Interpretation of Quantum Mechanics". UPSCALE. Dept. of Physics, U. of Toronto. Retrieved 21 June 2008.
 Cassidy, David (2008). "Quantum Mechanics 1925–1927: Triumph of the Copenhagen Interpretation". Werner Heisenberg. American Institute of Physics.
 Boscá DíazPintado, María C. (29–31 March 2007). "Updating the waveparticle duality". 15th UK and European Meeting on the Foundations of Physics. Leeds, UK. Retrieved 21 June 2008.
 Bartell, L. (1980). "Complementarity in the doubleslit experiment: On simple realizable systems for observing intermediate particlewave behavior". Physical Review D. 21 (6): 1698–1699. Bibcode:1980PhRvD..21.1698B. doi:10.1103/PhysRevD.21.1698.
 Zeilinger, A. (1999). "Experiment and the foundations of quantum physics". Reviews of Modern Physics. 71 (2): S288–S297. Bibcode:1999RvMPS..71..288Z. doi:10.1103/RevModPhys.71.S288.
 P. Mittelstaedt; A. Prieur; R. Schieder (1987). "Unsharp particlewave duality in a photon splitbeam experiment". Foundations of Physics. 17 (9): 891–903. Bibcode:1987FoPh...17..891M. doi:10.1007/BF00734319. S2CID 122856271.
 D.M. Greenberger and A. Yasin, "Simultaneous wave and particle knowledge in a neutron interferometer", Physics Letters A 128, 391–4 (1988).
 Wootters, W. K.; Zurek, W. H. (1979). "Complementarity in the doubleslit experiment: Quantum nonseparability and a quantitative statement of Bohr's principle" (PDF). Phys. Rev. D. 19 (2): 473–484. Bibcode:1979PhRvD..19..473W. doi:10.1103/PhysRevD.19.473. Retrieved 5 February 2014.
 Hillmer, R.; Kwiat, P. (2007). "A doityourself quantum eraser". Scientific American. Vol. 296 no. 5. pp. 90–95. Bibcode:2007SciAm.296e..90H. doi:10.1038/scientificamerican050790. Retrieved 11 January 2016.
 Chiao, R. Y.; P. G. Kwiat; Steinberg, A. M. (1995). "Quantum nonlocality in twophoton experiments at Berkeley". Quantum and Semiclassical Optics: Journal of the European Optical Society Part B. 7 (3): 259–278. arXiv:quantph/9501016. Bibcode:1995QuSOp...7..259C. doi:10.1088/13555111/7/3/006. S2CID 118987962.
 Francis, Matthew (21 May 2012). "Disentangling the waveparticle duality in the doubleslit experiment". Ars Technica.
 Svensson, Bengt E. Y. (2013). "Pedagogical Review of Quantum Measurement Theory with an Emphasis on Weak Measurements". Quanta. 2 (1): 18–49. arXiv:1202.5148. doi:10.12743/quanta.v2i1.12.
 Pfleegor, R. L.; Mandel, L. (July 1967). "Interference of Independent Photon Beams". Physical Review. 159 (5): 1084–1088. Bibcode:1967PhRv..159.1084P. doi:10.1103/PhysRev.159.1084.
 "Interference of Independent Photon Beams: The PfleegorMandel Experiment". Archived from the original on 3 January 2011. Retrieved 16 June 2011.>
 Sillitto, R.M.; Wykes, Catherine (1972). "An interference experiment with light beams modulated in antiphase by an electrooptic shutter". Physics Letters A. 39 (4): 333–334. Bibcode:1972PhLA...39..333S. doi:10.1016/03759601(72)910158.
 "To a light particle"
 Arndt, Markus; Nairz, Olaf; VosAndreae, Julian; Keller, Claudia; Van Der Zouw, Gerbrand; Zeilinger, Anton (1999). "Wave–particle duality of C60 molecules". Nature. 401 (6754): 680–682. Bibcode:1999Natur.401..680A. doi:10.1038/44348. PMID 18494170. S2CID 4424892.
 Schouten, H.F.; Kuzmin, N.; Dubois, G.; Visser, T.D.; Gbur, G.; Alkemade, P.F.A.; Blok, H.; Hooft, G.W.; Lenstra, D.; Eliel, E.R. (7 February 2005). "PlasmonAssisted TwoSlit Transmission: Young's Experiment Revisited". Phys. Rev. Lett. 94 (5): 053901. Bibcode:2005PhRvL..94e3901S. doi:10.1103/physrevlett.94.053901. PMID 15783641.
 Bach, Roger; et al. (March 2013). "Controlled doubleslit electron diffraction". New Journal of Physics. 15 (3): 033018. arXiv:1210.6243. Bibcode:2013NJPh...15c3018B. doi:10.1088/13672630/15/3/033018. S2CID 832961.
 Yaakov Y. Fein; Philipp Geyer; Patrick Zwick; Filip Kiałka; Sebastian Pedalino; Marcel Mayor; Stefan Gerlich; Markus Arndt (September 2019). "Quantum superposition of molecules beyond 25 kDa". Nature Physics. 15 (12): 1242–1245. Bibcode:2019NatPh..15.1242F. doi:10.1038/s4156701906639. S2CID 203638258.
 Bush, John WM (2015). "Pilotwave hydrodynamics" (PDF). Annual Review of Fluid Mechanics. 47 (1): 269–292. Bibcode:2015AnRFM..47..269B. doi:10.1146/annurevfluid010814014506. hdl:1721.1/89790. Retrieved 21 June 2015.
 Bush, John W. M. (2010). "Quantum mechanics writ large". PNAS. 107 (41): 17455–17456. Bibcode:2010PNAS..10717455B. doi:10.1073/pnas.1012399107. PMC 2955131.
 Natalie Wolchover (30 June 2014). "Have We Been Interpreting Quantum Mechanics Wrong This Whole Time?". Wired.
 Couder, Y.; Fort, E. (2012). "Probabilities and trajectories in a classical waveparticle duality". Journal of Physics: Conference Series. 361 (1): 012001. Bibcode:2012JPhCS.361a2001C. doi:10.1088/17426596/361/1/012001.
 Baggott, Jim (2011). The Quantum Story: A History in 40 Moments. New York: Oxford University Press. pp. 76. ("The wavefunction of a system containing N particles depends on 3N position coordinates and is a function in a 3Ndimensional configuration space or 'phase space'. It is difficult to visualize a reality comprising imaginary functions in an abstract, multidimensional space. No difficulty arises, however, if the imaginary functions are not to be given a real interpretation.")
 Li, Pengyun; Sun, Yifan; Yang, Zhenwei; Song, Xinbing; Zhang, Xiangdong (2016). "Classical hypercorrelation and waveoptics analogy of quantum superdense coding". Scientific Reports. 5: 18574. Bibcode:2015NatSR...518574L. doi:10.1038/srep18574. PMC 4686973. PMID 26689679.
 Jenkins FA and White HE, Fundamentals of Optics, 1967, McGraw Hill, New York
 Longhurst RS, Physical and Geometrical Optics, 1967, 2nd Edition, Longmans
 Rovelli, Carlo (1996). "Relational Quantum Mechanics". International Journal of Theoretical Physics. 35 (8): 1637–1678. arXiv:quantph/9609002. Bibcode:1996IJTP...35.1637R. doi:10.1007/BF02302261. S2CID 16325959.
 Philippidis, C.; Dewdney, C.; Hiley, B. J. (1979). "Quantum interference and the quantum potential". Il Nuovo Cimento B. 52 (1): 15–28. Bibcode:1979NCimB..52...15P. doi:10.1007/bf02743566. ISSN 18269877. S2CID 53575967.
 "Bohmian Mechanics". The Stanford Encyclopedia of Philosophy. Metaphysics Research Lab, Stanford University. 2017.
Further reading
 AlKhalili, Jim (2003). Quantum: A Guide for the Perplexed. London: Weidenfeld & Nicolson. ISBN 9780297843054.
 Ananthaswamy, Anil (2018). Through Two Doors at Once: The Elegant Experiment That Captures the Enigma of Our Quantum Reality. Dutton/Penguin. ISBN 9781101986097.
 Feynman, Richard P. (1988). QED: The Strange Theory of Light and Matter. Princeton University Press. ISBN 9780691024172.
 Frank, Philipp (1957). Philosophy of Science. PrenticeHall.
 French, A.P.; Taylor, Edwin F. (1978). An Introduction to Quantum Physics. Norton. ISBN 9780393091069.
 Greene, Brian (2000). The Elegant Universe. Vintage. ISBN 9780375708114.
 Greene, Brian (2005). The Fabric of the Cosmos. Vintage. ISBN 9780375727207.
 Gribbin, John (1999). Q is for Quantum: Particle Physics from A to Z. Weidenfeld & Nicolson. ISBN 9780753806852.
 Hey, Tony (2003). The New Quantum Universe. Cambridge University Press. Bibcode:2003nqu..book.....H. ISBN 9780521564571.
 Sears, Francis Weston (1949). Optics. Addison Wesley.
 Tipler, Paul (2004). Physics for Scientists and Engineers: Electricity, Magnetism, Light, and Elementary Modern Physics (5th ed.). W. H. Freeman. ISBN 9780716708100.
External links
Wikimedia Commons has media related to Doubleslit experiments. 
Interactive animations
Single particle experiments
 Website with the movie and other information from the first single electron experiment by Merli, Missiroli, and Pozzi.
 Movie showing single electron events build up to form an interference pattern in doubleslit experiments. Several versions with and without narration (File size = 3.6 to 10.4 MB) (Movie Length = 1m 8s)
 Freeview video 'Electron Waves Unveil the Microcosmos' A Royal Institution Discourse by Akira Tonomura provided by the Vega Science Trust
 Hitachi website that provides background on Tonomura video and link to the video