Is this a reliable method for getting a list of very large primes?

7

1

As noted here, both PrimePi and Prime are documented as having their limits somwhere around $10^{15}.$ PrimeQ and NextPrime on the other hand don't seem to be so restricted. Is the following a reliable way of getting around that for short intervals of primes at greater heights?

pGAPS[r1_, r2_] := 
  If[r1 < 3, 
    "start range must be > 2", 
    With[{bb = Split @ PrimeQ @ Range[r1, r2]}, 
      With[{cc = If[bb[[1, 1]] == False, bb[[;; ;; 2]], bb[[2 ;; -1 ;; 2]]]},
        Most @ Rest @ (Length @ #& /@ cc + 1)]]]

With[{a = 10^20, b = 10^20 + 10^4}, NextPrime[a] + Accumulate @ pGAPS[a, b]]

If so, Is there a more efficient way?

martin

Posted 2015-09-07T07:37:35.520

Reputation: 7 587

Related? (3327)

– dr.blochwave – 2015-09-07T07:46:10.797

@blochwave - thanks for link - have incorporated into question now :) – martin – 2015-09-07T07:50:09.600

Also note this discussion over on Wolfram Community

– dr.blochwave – 2015-09-07T07:52:46.440

@blachwave - thanks, hadn't seen that one - will give it a read – martin – 2015-09-07T07:53:55.787

5Why not just With[{a = #1, b = #2}, Rest@NestWhileList[NextPrime, NextPrime[a], # <= b &]] & - simpler and as fast... – ciao – 2015-09-07T09:16:18.030

@ciao nice :) thanks - definitely simpler ! – martin – 2015-09-07T09:31:46.933

No answers