For flipping the axes I use the following function:

```
Options[flippeAchsen] = Union[{Achsen -> 1}, Options[Graphics]];
flippeAchsen[pp_Graphics, opts : OptionsPattern[]] :=
Module[{tx, ty, labx, laby, GAPx, GAPy, qq, xyRule, x, y, achs,
TICKS, ticks, gropts, frame, FTall}, achs = OptionValue[Achsen];
If[achs > 3, FTall = True; achs = Mod[achs, 3, 1], FTall = False];
frame = OptionValue[Frame];
TICKS = If[frame === True, FrameTicks, Ticks];
gropts = Sequence @@ FilterRules[Flatten[{opts}], Options[Graphics]];
tx = AbsoluteOptions[pp, TICKS][[1, 2, 1]];
ty = AbsoluteOptions[pp, TICKS][[1, 2, 2]];
labx = Select[Flatten[Cases[tx, {n_, l_, rest__}]], NumericQ];
laby = Select[Flatten[Cases[ty, {n_, l_, rest__}]], NumericQ];
GAPx = Max[labx] - Min[labx];
GAPy = Max[laby] - Min[laby];
Which[achs == 1,(*x Achse*)
xyRule = {x_?NumericQ, y_?NumericQ} -> {GAPx - x, y};
ticks = {Map[{GAPx - First[#], Sequence @@ Rest[#]} &, tx], ty},
achs == 2,(*y Achse*)
xyRule = {x_?NumericQ, y_?NumericQ} -> {x, GAPy - y};
ticks = {tx, Map[{GAPy - First[#], Sequence @@ Rest[#]} &, ty]},
achs == 3,(*beide Achsen*)
xyRule = {x_?NumericQ, y_?NumericQ} -> {GAPx - x, GAPy - y};
ticks = {Map[{GAPx - First[#], Sequence @@ Rest[#]} &, tx],
Map[{GAPy - First[#], Sequence @@ Rest[#]} &, ty]}];
ticks =
If[frame === True,
If[FTall ===
True, {{ticks[[2]], ticks[[2]]}, {ticks[[1]],
ticks[[1]]}}, {{ticks[[2]], None}, {ticks[[1]], None}}], ticks];
Show[pp /. xyRule, Evaluate[gropts], Axes -> True, PlotRange -> All,
AxesOrigin -> AbsoluteOptions[pp, AxesOrigin][[1, 2]] /. xyRule,
TICKS -> ticks]]
```

The option Achsen choses the axes to flip:

`Achsen->1`

reverts the first (x-axis)

`Achsen->2`

reverts the second (y-axis

`Achsen->3`

reverts both

If you use `FrameTicks`

you must pass this option to `flippeAchsen`

too.

In frames the ticks are drawn bottom and left by default. If one want the Ticks on all four sides, just add 3 to the option `Achsen`

.

Call is: `flippeAchsen[plot, Achsen->number]`

1You've flipped the curve (and that is easily done indeed), but I don't see any difference in the ticks between your first and second image... are you sure that's what you intended? – J. M.'s ennui – 2012-05-18T12:55:34.083

@J.M. fixed, thanks. – s0rce – 2012-05-18T13:00:24.197

1

related http://groups.google.com/group/comp.soft-sys.math.mathematica/browse_thread/thread/e3f356f8028208d1/d2385a2984b8c26b?lnk=gst&q=inverting+axis&rnum=10&pli=1

– Dr. belisarius – 2012-05-18T13:31:14.1332

Strongly related: http://stackoverflow.com/q/5655224/618728

– Mr.Wizard – 2012-05-18T13:50:26.637