How to avoid TeXForm command from simplifying?

6

I have a very small question. I want to convert the expression below to Texform.

(2 m^2)^(-2 ϵ) (s/(4 m^2))^z Pi^(1/2) (Gamma[-z] Gamma[1 + z] Gamma[1 - ϵ] Gamma[
   z + ϵ] Gamma[z + 2 ϵ])/(Gamma[2 + z - ϵ] Gamma[1/2 + z + ϵ])

but when I use TeXForm[] command it gives TexForm but it simplifies the expression slightly although I want no simplification. How can I tell Mathematica not to do this?

Epsilon

Posted 2020-05-14T22:09:49.590

Reputation: 780

Answers

8

You could use HoldForm

   expr = (2 m^2)^(-2 ϵ) (s/(4 m^2))^
   z Pi^(1/2) (Gamma[-z] Gamma[1 + z] Gamma[1 - ϵ] Gamma[
      z + ϵ] Gamma[z + 2 ϵ])/(Gamma[
      2 + z - ϵ] Gamma[1/2 + z + ϵ])

Original

Mathematica graphics

Traditional Form

     TraditionalForm[expr] 

Mathematica graphics

TeXForm with No HoldForm

  TeXForm[expr]

$$ \frac{\sqrt{\pi } \left(m^2\right)^{-2 \epsilon } 2^{-2 z-2 \epsilon } \Gamma (-z) \Gamma (z+1) \Gamma (1-\epsilon ) \left(\frac{s}{m^2}\right)^z \Gamma (z+\epsilon ) \Gamma (z+2 \epsilon )}{\Gamma (z-\epsilon +2) \Gamma \left(z+\epsilon +\frac{1}{2}\right)} $$

TeXForm with HoldForm

TeXForm[HoldForm[(2 m^2)^(-2 ϵ) (s/(4 m^2))^
    z Pi^(1/2) (Gamma[-z] Gamma[1 + z] Gamma[1 - ϵ] Gamma[
       z + ϵ] Gamma[z + 2 ϵ])/(Gamma[
       2 + z - ϵ] Gamma[1/2 + z + ϵ])]]

$$ \frac{\left(2 m^2\right)^{-2 \epsilon } \left(\frac{s}{4 m^2}\right)^z \sqrt{\pi } (\Gamma (-z) \Gamma (1+z) \Gamma (1-\epsilon ) \Gamma (z+\epsilon ) \Gamma (z+2 \epsilon ))}{\Gamma (2+z-\epsilon ) \Gamma \left(\frac{1}{2}+z+\epsilon \right)} $$

To use HoldForm you'd have to apply the actual expression itself, not the variable expr in there.

Nasser

Posted 2020-05-14T22:09:49.590

Reputation: 92 661