רדיאן

רדיאן הוא יחידת מידה חסרת ממד למדידת זוויות הכלול במערכת היחידות הבינלאומית. בעבר היה הרדיאן יחידה משלימה של מערכת היחידות הבינלאומית, אך קטגוריה זו בוטלה ב-1995.

הרדיאן מוגדר כזווית היוצאת ממרכז מעגל ונוצרת על ידי קשת שאורכה שווה לאורך של רדיוס המעגל - (ראו באיור משמאל). כיוון שהיקף מעגל הוא עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \ 2 \pi R} , במעגל כולו יש בסך הכל עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \ 2 \pi} רדיאנים.

לרוב, גודל זווית ברדיאנים ניתן ללא ציון היחידה המפורשת. לעיתים היחידה מצוינת בקיצור כ-rad.

רדיאנים ומעלות

במובן מסוים, הרדיאנים הם יחידות הזווית האמיתיות, מאחר שמדובר בגדלים חסרי ממד הנקבעים על פי היחסים הטבעיים שבבעיה, רדיוס וקשת המעגל. זאת לעומת השימוש במעלות, בו נעשית חלוקה שרירותית של המעגל ל-360 גזרות.

מכיוון שהמעגל מחולק ל- רדיאנים ול- 360 מעלות:

  • זווית של רדיאן אחד שווה לזווית של מעלות.
  • זווית של מעלה שווה ל- עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \ \pi/180 \approx 0.017} רדיאנים.
מעלות 30 45 60 90 120 180 270 360
רדיאנים עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \ \pi/4} עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \ \pi/3} עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \ 2\pi/3} עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \ 3\pi/2}
גרדיאנים ⅓ 33 50 ⅔ 66 100 ⅓ 133 200 300 400

שימוש ברדיאנים

במתמטיקה ופיזיקה, כאשר מבצעים אנליזה מתמטית של פונקציות טריגונומטריות, הארגומנט של הפונקציה ניתן תמיד ברדיאנים כך שהפונקציה מקבלת גודל חסר ממדים ומחזירה גודל חסר ממדים.

לדוגמה: עבור גל, פונקציית הגל מתוארת על ידי כאשר היא התדירות הזוויתית (יחידות של 1 חלקי זמן) ואילו הוא אורך הגל (יחידות של אורך).

אחד המניעים למדידת זוויות ברדיאנים, ולא במעלות, הוא שבחשבון אינפיניטסימלי, השימוש ברדיאנים מוביל לזהות הפשוטה:

עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \lim_{h\rightarrow 0}\frac{\sin h}{h}=1}

אשר היא הבסיס לזהויות רבות במתמטיקה דוגמת נוסחאות הגזירה של הפונקציות הטריגונומטריות. לכן, הרדיאן הוא יחידת מידה "טבעית" לזווית. לו הזווית הייתה נמדדת במעלות ולא ברדיאנים, הגבול והנגזרות היו כוללים פקטור תיקון שהיה מסרבל מעט את הנוסחאות, ואינו מופיע כאשר מודדים את הזווית ברדיאנים. כך, לדוגמה, טור טיילור של פונקציית הסינוס, כאשר הזווית נמדדת ברדיאנים, הוא:

עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \begin{align} \sin x & = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \cdots \\[8pt] & = \sum_{n=0}^\infty \frac{(-1)^n}{(2n+1)!}x^{2n+1} \\[8pt] \end{align} }

אם, לעומת זאת, הזווית הייתה נמדדת במעלות, מהעובדה ש-x רדיאנים שווים πx /180 מעלות, היה מתקבל טור טיילור הבא:

ראו גם

קישורים חיצוניים

הערך באדיבות ויקיפדיה העברית, קרדיט,
רישיון cc-by-sa 3.0
This article is issued from Hamichlol. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.