קבוצות זרות

במתמטיקה, זוג קבוצות הן זרות אם אין להן איבר משותף. לדוגמה, ו- הן קבוצות זרות.

הסבר

על פי ההגדרה, זוג קבוצות A ו B הן זרות אם החיתוך שלהן הוא הקבוצה הריקה, כלומר אם מתקיים:

עבור כל אוסף של קבוצות מוגדר כי הקבוצות באוסף הן זרות בזוגות אם כל זוג קבוצות (שונות) באוסף הוא זר, כלומר לכל זוג אינדקסים שונים, i ו-j, מתקיים:

לדוגמה, הקבוצות באוסף הקבוצות הבא { {1}, {2}, {3}, ... } הן זרות בזוגות.

אם {Ai} הוא אוסף קבוצות זרות בזוגות אז החיתוך שלו הוא ריק,

לעומת זאת, הכיוון ההפוך אינו נכון: החיתוך של האוסף {{1, 2}, {2, 3}, {3, 1}} הוא ריק, אך הקבוצות בו אינן זרות בזוגות, למעשה אין שום זוג קבוצות זרות באוסף.

חלוקה

ערך מורחב – חלוקה (תורת הקבוצות)

חלוקה של קבוצה היא פירוק של הקבוצה לאוסף של תת-קבוצות זרות שאיחודן הוא הקבוצה עצמה.

במילים אחרות, בהינתן קבוצה X, הקבוצות הן חלוקה של X, אם הן זרות בזוגות וכן :.[hebrew 1]

ראו גם

קישורים חיצוניים

ראו מדיה וקבצים בנושא זה בוויקישיתוף.

ביאורים

  1. לשם הפשטות, ניתנה דוגמה של אוסף בן מניה, אך חלוקה מוגדרת גם על אוסף לא בן-מניה של קבוצות.
This article is issued from Hamichlol. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.