פונקציית החלוקה (תורת המספרים)

בקומבינטוריקה ובתורת המספרים, חלוקה של מספר טבעי היא הצגה שלו כסכום של חלקים, כמו עיבוד הנוסחה נכשל (שגיאת המרה. השרת ("https://en.wikipedia.org/api/rest_") השיב: "Cannot get mml. Server problem."): {\displaystyle 5=3+1+1} . שתי חלוקות שההבדל היחיד ביניהן הוא סדר הרכיבים, נחשבות לאותה החלוקה. החלוקות מופיעות בתחומים שונים בקומבינטוריקה, כגון פולינומים סימטריים ותורת ההצגות של החבורה הסימטרית.

מספר החלוקות השונות של נקרא פונקציית החלוקה של , ומקובל לסמנו עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle p(n)} . למשל,

עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \begin{align}p(3)&=3\ \big\{3\ ,\ 2+1\ ,\ 1+1+1\big\}\\p(4)&=4\ \Big\{4\ ,\ 3+1\ ,\ 2+2\ ,\ 2+1+1\ ,\ 1+1+1+1\Big\}\end{align}}

עבור הערכים עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle n=1,\ldots,10} , פונקציית החלוקה מקבלת את הערכים הבאים: עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle p(n)=1,2,3,5,7,11,15,22,30,42} . ערכי הפונקציה גדלים במהירות: עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle p(100)=190569292} , ואילו עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle p(1000)\approx2.4\cdot10^{31}} .

גודפרי הרולד הארדי וראמאנוג'ן הוכיחו ב־1917[1] את הנוסחה האסימפטוטית עיבוד הנוסחה נכשל (שגיאת המרה. השרת ("https://en.wikipedia.org/api/rest_") השיב: "Cannot get mml. Server problem."): {\displaystyle p(n)\sim {\frac {e^{\pi {\sqrt {\frac {2n}{3}}}}}{4{\sqrt {3}}n}}} . לצורך כך השתמשו הארדי וראמאנוג'ן בתאוריה של תבניות מודולריות, שהם היו ממייסדיה, כשהמציאו את "שיטת המעגל" לצורך הערכת המקדמים של פונקציית תטא המתאימה לפונקציית החלוקה,

עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle g(q)=\sum p(n)q^n=\prod_{m\ge1}(1-q^m)^{-1}}

בין התכונות המפתיעות של פונקציות החלוקה אפשר למנות את הקונגרואנציות שגילה ראמאנוג'ן: לכל מתקיים עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle p(5n+4)} מתחלק ב-5. באופן דומה מתחלק תמיד ב-7, ו־עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle p(11n+6)} מתחלק ב-11. תוצאות אלה קשורות במספרים מצולעים. מאוחר יותר התגלה גם שהמספרים עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle p(17303n+237)} מתחלקים ב-13. בשנת 2000 הוכיח קן אונו שזהויות כאלו קיימות לכל מספר ראשוני ומספר שנים לאחר מכן תוצאה זו הורחבה לכל מספר שלם שזר ל-6.

פונקציה יוצרת

את פונקציית החלוקה חקר לראשונה לאונרד אוילר, שמצא עבור הפונקציה היוצרת שלה פירוק למכפלה אינסופית עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \sum_{n=0}^\infty p(n)x^n=\prod_{k=1}^\infty(1-x^k)^{-1}} , צעד שבמידת מה נחשב לראשיתה של תורת המספרים האנליטית.

הפירוק פשוט להוכחה באמצעות הנוסחה לסיכום טור גאומטרי:

מספר הפעמים שהאבר עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle x^n} יתקבל בפתיחת המכפלה באגף ימין הוא בדיוק עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle p(n)} מכיוון ש־ קובע באופן יחיד את מספר הפעמים שהמספר עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle k} מופיע בחלוקה נתונה.

מאותו הטעם, באופן כללי הפונקציה היוצרת של מספר החלוקות בהן מופיעים רק מספרים מקבוצה עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle A\sube\N} הוא: עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \prod_{k\in A}(1-x^k)^{-1}} .

ממשפט המספרים המחומשים נובעת באמצעות מניפולציה על הפונקציה היוצרת נוסחת הנסיגה:

עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle {p(n)=\sum_{k\in\Z\setminus\{0\}}(-1)^{k-1}p(n-p_k)=p(n-1)+p(n-2)-p(n-5)-p(n-7)+p(n-12)+\cdots}}

כאשר עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle p_n=\frac{3n^2-n}{2}} הוא המספר המחומש המוכלל ה־־י. זהו סכום סופי, מכיוון ש־ (סכום ריק) ולכל עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle k} שלילי עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle p(k)=0} .

דיאגרמות יאנג

את מבנה החלוקה ניתן לייצג באופן גאומטרי על ידי דיאגרמות יאנג, כך לאבר הגדול ביותר של החלוקה, תשוייך השורה הראשונה, עם מספר ריבועים כגודל האבר. לאבר הכי גדול אחריו תשוייך השורה הבאה, וכך באופן דומה. לכל חלוקה קיימת חלוקה הצמודה לה. באופן אינטואיטיבי, היא מתקבלת על ידי הסתכלות על השורות בחלוקה המקורית, כשורות בחלוקה הצמודה.

משפט: מספר החלוקות של בעלות מרכיב מקסימלי לא גדול מ־ , שווה למספר החלוקות בעלות מספר מרכיבים לא גדול מ־ .

הוכחה: לכל חלוקה בעלת מרכיב מקסימלי , קיימת דיאגרמת יאנג התואמת לה. לאותה דיאגרמה קיימת דיאגרמה צמודה התואמת לחלוקה הצמודה לחלוקה המקורית. האבר הגדול ביותר בדיאגרמת היאנג המקורית שווה למספר המרכיבים בדיאגרמת היאנג הצמודה. באופן כזה נבנה התאמה חד־חד־ערכית בין כל חלוקה לצמודה לה ולמעשה בין שתי הקבוצות שבנידון. כתוצאה מכך שתי הקבוצות הן בעלות אותה עוצמה ולכן הטענה הוכחה.

ראו גם

קישורים חיצוניים

הערות שוליים

  1. Hardy, G. H.; Ramanujan, S., Asymptotic formulae in combinatory analysis., J. Lond. M. S. Proc. (2) 17, 75-115 (1917); הופיע גם ב- Hardy, G. H. and Ramanujan, S. "Asymptotic Formulae in Combinatory Analysis." Proc. London Math. Soc. 17, 75-115, 1918
This article is issued from Hamichlol. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.