פאוני קטלן

בגאומטריית המרחב, פאוני קָטָלָן הם הפאונים התלת-ממדיים הקמורים שחבורת הסימטריות שלהם פועלת טרניזיטיבית על הפאות, אבל לא על הקודקודים. לכן כל הפאות שלהם חופפות זו לזו, אך אינן משוכללות. פאונים אלה דואליים לפאונים הארכימדיים, שחבורת הסימטריות שלהם פועלת טרנזיטיבית על הקודקודים (ולא על הפאות). הם נקראים על שם אז'ן שרל קטלן.

יש שלושה-עשר פאונים ארכימדיים, ובהתאם לכך, שלושה-עשר פאוני קטלן. שניים מהם בעלי כיווניות ימנית או שמאלית, וביחד 15 פאונים שונים (עד כדי דמיון במרחב). פאון קטלן מאופיין על ידי תבנית פאות, המכתיבה כמה פאות נפגשות בכל קודקוד של פאה מסוימת. לדוגמה, לפאון שתבניתו היא V4.6.8, יש קודקוד אחד שנפגשות בו ארבע פאות, קודקוד אחד שנפגשות בו שש פאות וקודקוד אחד שנפגשות בו שמונה פאות. תבנית הפאות של פאון קטלן זהה לתבנית הקודקודים של הפאון הדואלי שלו.

שם
(תבנית פאות)
דמות שקופה דמות אטומה פרישה פאות מקצועות קודקודים טיפוס חבורת הסימטריה פאון דואלי
טטרהדרון טריאקיסי

(V3.6.6)

12 18 8 Td

ארבעון קטום

רומביק דודקהדרון

(V3.4.3.4)

12 24 14 Oh

קובוקטהדרון

אוקטהדרון טריאקיסי

(V3.8.8)

24 36 14 Oh

קובייה קטומה

הקסהדרון טריאקיסי

(V4.6.6)

24 36 14 Oh

תמניון קטום

איקוסיטטרהדרון דלתואידי

(V3.4.4.4)

24 48 26 Oh

רומביקובוקטהדרון

דיסדייקיס דודקהדרון

(V4.6.8)

48 72 26 Oh

קובוקטהדרון קטום

איקוסיטטרהדרון מחומש

(2 צורות כיווניות)
(V3.3.3.3.4)

24 60 38 O

קובייה מסותתת

רומביק טריאקונטהדרון

(V3.5.3.5)

30 60 32 Ih

איקוסידודקהדרון

איקוסהדרון טריאקיסי

(V3.10.10)

60 90 32 Ih

דודקהדרון קטום

פנטקיס דודקהדרון

(V5.6.6)

60 90 32 Ih

איקוסהדרון קטום

הקסקונטהדרון דלתואידי

(V3.4.5.4)

60 120 62 Ih

רומביקוסידודקהדרון

דיסדייקיס טריאקונטהדרון

(V4.6.10)

120 180 62 Ih

איקוסידודקהדרון קטום

הקסקונטהדרון מחומש
(2 צורות כיווניות)

(V3.3.3.3.5)

60 150 92 I

דודקהדרון מסותת

ראו גם

This article is issued from Hamichlol. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.