משוואת פואסון

משוואת פואסון היא משוואה דיפרנציאלית חלקית עם שימושים רבים באלקטרוסטטיקה, הנדסת מכונות ופיזיקה תאורטית. היא נקראת על שם המתמטיקאי והפיזיקאי הצרפתי סימאון דני פואסון.

משוואת פואסון היא:

כאשר הוא אופרטור לפלס או לפלסיאן ו-f ו-φ הן פונקציות מרחביות. כאשר המרחב הוא מרחב אוקלידי מסמנים את הלפלסיאן כך: עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle {\nabla}^2} ומשוואת פואסון נכתבת בצורה הבאה:

עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle {\nabla}^2 \varphi = f}

במרחב תלת ממדי במערכת צירים קרטזית המשוואה היא מהצורה הבאה:

כאשר המשוואה היא הומוגנית (עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle f=0} ) משוואת פואסון הופכת למשוואת לפלס, והפונקציה המקיימת אותה נקראת פונקציה הרמונית :

עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \Delta \varphi = 0. \!}

משוואת פואסון ניתן לפתור על ידי פונקציית גרין. ישנן גם שיטות נומריות רבות לפתרון. שיטת הרלקסציה היא אחת מהן.

אלקטרוסטטיקה

אחת מאבני היסוד של האלקטרוסטטיקה היא הצגת הבעיה המתוארת על ידי משוואת פואסון. מציאת φ עבור f נתונה היא בעיה חשובה ועל ידי כך מוצאים את פונקציית הפוטנציאל החשמלי עבור התפלגות מטענים נתונה. במערכת יחידות SI:

כאשר עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \Phi \! } הוא הפוטנציאל החשמלי (בוולט), עיבוד הנוסחה נכשל (שגיאת המרה. השרת ("https://en.wikipedia.org/api/rest_") השיב: "Cannot get mml. Server problem."): {\displaystyle \rho \!} היא צפיפות המטען (בקולון למטר בשלישית) ו- היא הפרמיטיביות של הריק (בפאראד למטר).

באזור במרחב שבו אין מטענים מתקיים : והמשוואה לפוטנציאל הופכת למשוואת לפלס:

עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle {\nabla}^2 \Phi = 0.}

פוטנציאל של התפלגות מטענים גאוסיאנית

בהתפלגות גאוסיאנית תלת ממדית ספרית סימטרית של צפיפות המטען עיבוד הנוסחה נכשל (שגיאת המרה. השרת ("https://en.wikipedia.org/api/rest_") השיב: "Cannot get mml. Server problem."): {\displaystyle \ \rho (r)} מתקיים:

עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \rho(r) = \frac{Q}{\sigma^3\sqrt{2\pi}^3}\,e^{-r^2/(2\sigma^2)}}

כאשר Q הוא המטען הכולל, הפתרון Φ (r) של משוואת פואסון:

נתון על ידי:

עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \Phi(r) = { 1 \over 4 \pi \epsilon_0 } \frac{Q}{r}\,\mbox{erf}\left(\frac{r}{\sqrt{2}\sigma}\right) }

כאשר עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \mbox{erf}\,(x)} היא פונקציית השגיאה. ניתן לבדוק את נכונות הפתרון על ידי הערכה של . שים לב שעבור r גדול בהרבה מ-σ, עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \mbox{erf}\,(x)} מתקרבת ל-1 והפוטנציאל עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \ \Phi(r)} שואף לפוטנציאל של מטען נקודתי עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle { 1 \over 4 \pi \epsilon_0 } {Q \over r} } , כצפוי.

This article is issued from Hamichlol. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.