משוואה

משוואה היא שוויון בין שני ביטויים שמופיע בו משתנה אחד או יותר. כמו בכל שוויון, שני הביטויים מופרדים באמצעות סימן השוויון, "=".

פתרון של המשוואה הוא ערך של המשתנה שהצבתו נותנת למשוואה ערך אמת, כלומר לאחר ההצבה מתקיים השוויון בין שני אגפי המשוואה. אם כל הצבה נותנת ערך אמת, כמו בדוגמה עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle x(x-1)=x^2-x} , המשוואה היא זהות, ואז אין בהתרתה כל אתגר. במקרים אחרים יש למצוא פתרון כלשהו למשוואה, או את כל הפתרונות האפשריים. למשל, המשוואה עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle x^2-x=0} נכונה רק לשני ערכים של X, ופתרונותיה הם עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle x=0,x=1} . במקרים מסוימים משתמשים בסימון מיוחד, סימן השקילות , כדי לציין זהות ולהבדיל אותה ממשוואה רגילה.

מאפיינים

קובץ:Eqn balance multiplication division.gif
כפל, חילוק, איסוף גורמים זהים.
קובץ:Eqn balance addition subtraction negation.gif
חיבור, חיסור, שלילה, איסוף גורמים זהים.
אנימציה של משוואה כשתי כפות מאזניים.

אם השוויון עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle a=b} אמיתי, אפשר להפעיל כל פונקציה על שני האגפים, והתוצאה תשאר אמיתית. בפרט, אפשר לחבר, לחסר, להכפיל ולחלק את אגפי השוויון בכל מספר, וכל פתרון של המשוואה המקורית יהיה פתרון גם של המשוואה החדשה. אם הפעולה הפיכה (כגון חיבור, שאפשר להפוך על ידי חיסור מתאים, או כפל במספר השונה מאפס), התהליך אינו מוסיף למשוואה פתרונות חדשים. אם הפעולה אינה הפיכה (פורמלית, אם מפעילים פונקציה שאינה חד-חד-ערכית), היא עלולה להוסיף פתרונות חדשים, ובכך היא מאבדת חלק מהמידע הטמון במשוואה המקורית. במקרה קיצוני, כגון כפל באפס, המשוואה הופכת לזהות, שהיא משוואה טריוויאלית.

סוגים נפוצים של משוואות

  • משוואה פולינומית: משוואות מהצורה .
    • משוואה לינארית: משוואה שכל המשתנים בה הם ממעלה ראשונה, כלומר מופיעים ללא חזקות.
    • משוואה ממעלה שנייה או משוואה ריבועית: משוואה מהצורה עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle ax^2+bx+c=0} כאשר הם מקדמים בשדה נתון (למשל, המספרים הרציונליים). פתרונות המשוואה עלולים להיות שייכים לשדה המרחיב את השדה המקורי.
    • משוואה ממעלה שלישית או משוואה מעוקבת: משוואה מהצורה עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle ax^3+ax^2+bx+d=0} כאשר עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle a,b,c,d} הם מקדמים בשדה נתון.
    • משוואה ממעלה רביעית: משוואה מהצורה עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle ax^4+bx^3+cx^2+dx+e=0} , וכן הלאה.
  • משוואה מעריכית: משוואה שהנעלם נמצא בה במעריך של חזקה, כמו עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle 2^{x^2}\cdot4^x=\frac12}
  • משוואה לוגריתמית: משוואה שהנעלם נמצא בה בלוגריתם. דוגמה: עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \log_2(x)=x-5} .
  • משוואה טריגונומטרית: משוואה שהנעלם נמצא בה בפונקציה טריגונומטרית. דוגמה: .
  • משוואה דיופנטית: משוואה שקבוצת הפתרונות שלה מוגבלת לקבוצת המספרים השלמים.
  • משוואה דיפרנציאלית: משוואה הכוללת משתנים, פונקציות של המשתנים הללו, ונגזרות של פונקציות אלה, וכן קבועים (מספרים). במשוואות כאלה הנעלם הוא הפונקציה, ואותה יש למצוא.
  • משוואה אינטגרלית: משוואה שבה הנעלם הוא פונקציה המופיעה תחת סימן האינטגרל.

ראו גם

קישורים חיצוניים

הערך באדיבות ויקיפדיה העברית, קרדיט,
רישיון cc-by-sa 3.0
This article is issued from Hamichlol. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.