מרחב מטרי

בטופולוגיה, מרחב מטרי היא קבוצה שמוגדרת עליה פונקציה סימטרית וחיובית, המקיימת את אי שוויון המשולש. פונקציה כזו (הנקראת מטריקה) מקיימת את התכונות היסודיות של המרחק הגאוגרפי, ולכן רואים בה הכללה של מושג המרחק. המטריקה מאפשרת להגדיר במרחב כדורים, שבזכותם יש למרחבים מטריים תכונות טופולוגיות קיצוניות.

הגדרה פורמלית

מטריקה על קבוצה S היא פונקציה עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \,d:S\times S \rarr \mathbb{R}} המקיימת את התכונות הבאות לכל :

  • חיוביות: ו- אם ורק אם עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \!\, x=y} ;
  • סימטריות:
  • אי שוויון המשולש: עיבוד הנוסחה נכשל (שגיאת המרה. השרת ("https://en.wikipedia.org/api/rest_") השיב: "Cannot get mml. Server problem."): {\displaystyle \,d(x,z)\leq d(x,y)+d(y,z)} .

קבוצה שמוגדרת עליה מטריקה נקראת מרחב מטרי.

דוגמאות

מרחבים נורמיים הם דוגמה חשובה למרחב מטרי, שהרי הנורמה מאפשרת להגדיר מטריקה על ידי עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle g(x,y)= \| x-y \|} . בפרט הישר והמישור הם מרחבים מטריים מהסוג הזה, כאשר המטריקה היא המרחק הגאומטרי המוכר.

על כל קבוצה אפשר להגדיר את המטריקה עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle d(x,y)=\begin{cases}0 & \text{ if } x=y \\ 1 & \text{ if } x\neq y \end{cases}} . מטריקה זו ידועה בתור "המטריקה הדיסקרטית" והטופולוגיה שמשרה היא הטופולוגיה הדיסקרטית (כלומר, במרחב זה כל קבוצה היא קבוצה פתוחה)

אם המטריקה היא למעשה אולטרה-מטריקה, כלומר, מקיימת עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle d(x,z) \le \textrm{max}\{d(x,y),d(y,z)\}} (זו דרישה חזקה יותר מאי שוויון המשולש), אז המרחב הוא 'מרחב מטרי לא ארכימדי', וכל משולש בו הוא שווה-שוקיים. הדוגמה המרכזית של מרחבים כאלה מתקבלת מהערכות לא ארכימדיות של שדות.

מרחב מטרי כמרחב טופולוגי

במרחב מטרי, קבוצת הנקודות שמרחקן מנקודה מסוימת קטן מקבוע חיובי מסוים, נקראת "כדור פתוח". קבוצה המוכלת בכדור כזה נקראת קבוצה חסומה (ואם המרחב כולו הוא קבוצה חסומה, אומרים שהמרחב חסום).

אוסף הכדורים הפתוחים מהווה בסיס לטופולוגיה, וכך אפשר לראות כל מרחב מטרי כמרחב טופולוגי. בניגוד לסתם מרחב טופולוגי, כל מרחב מטרי מקיים את תכונת ההפרדה T4 (יתרה מזאת, כל מרחב מטרי הוא מרחב נורמלי באופן מושלם או T6). מרחב מטרי הוא מרחב קומפקטי אם ורק אם הוא חסום כליל ושלם. אם המרחב חסום כליל, ההשלמה שלו היא דוגמה לקומפקטיפיקציה.

מרחב טופולוגי שניתן להגדיר עליו מטריקה שתגדיר את הטופולוגיה שלו נקרא מרחב מטריזבילי.

אוסף המרחבים המטריים

האוסדורף הגדיר מטריקה בין תת-הקבוצות הסגורות של מרחב מטרי קומפקטי, לפי , כאשר . בהגדרה זו השתמש גרומוב כדי להגדיר את המרחק בין שני מרחבים מטריים, כמרחק (של האוסדורף) המינימלי בין כל שתי תמונות איזומטריות של המרחבים, במרחב מטרי שלישי. הגדרה זו מובילה ל"טופולוגיית האוסדורף-גרומוב", שלפיה סדרת מרחבים מטריים מנוקדים מתכנסת למרחב מטרי מנוקד, אם לכל R, המרחקים בין הכדורים ברדיוס R במרחבים הנתונים, לבין הכדור ברדיוס R במרחב המטרה, שואפים לאפס.

ראו גם

לקריאה נוספת

קישורים חיצוניים

הערך באדיבות ויקיפדיה העברית, קרדיט,
רישיון cc-by-sa 3.0
This article is issued from Hamichlol. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.