מרחב גאודזי

בטופולוגיה, מרחב גאודזי הוא מרחב מטרי (עם מטריקה ), שבו כל המרחקים נמדדים על ידי מסילות מתאימות. הדרישה המקובלת היא שלכל שתי נקודות x,y במרחב תהיה איזומטריה מן הקטע ל-X, המעבירה את נקודות הקצה ל-x ול-y. מרחב כזה הוא, כמובן, קשיר מסילתית. המסילה המתקבלת מ-x ל-y נקראת מסילה גאודזית, והיא מתארת את המרחק הקצר ביותר בין הנקודות.

בין הדוגמאות החשובות למרחבים גאודזים - יריעת רימן שלמה (ובפרט כל משטח רימן); וגרף שבו מקצים על כל קשת מטריקה של קטע ממשי. כל מרחב מטרי שלם שבו לכל x,y יש נקודה z ביניהן (נקודה כך ש-), הוא גאודזי.

קיימות להגדרה גם וריאציות חזקות יותר, שבהן דורשים קיומה של איזומטריה מהישר הממשי, העוברת בכל זוג נקודות נתון. במרחבים כאלו אפשר להמשיך את הקטעים הגאודזים עד לאינסוף, לשני הכיוונים, ברוח האקסיומה השנייה של אוקלידס. במרחב גאודזי ממלאות המסילות הגאודזיות תפקיד דומה לזה של הקוים הישרים במרחב אוקלידי, ואכן, המרחב האוקלידי (ביחס למטריקה הנורמית) הוא מרחב גאודזי, שבו הגאודזים הם הקוים הישרים.

מקורות

  • Herbert Busemann, "The geometry of Geodesics", 1955 (Dover edition: 2005).
הערך באדיבות ויקיפדיה העברית, קרדיט,
רישיון cc-by-sa 3.0
This article is issued from Hamichlol. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.