מבנה אלגברי

באלגברה מופשטת, מבנה אלגברי הוא מבנה מתמטי המורכב מקבוצה עם פעולה, או פעולות, המקיימות אקסיומות מסוימות.

מבנים אלגבריים מדגימים את ההפשטה וההכללה שהם נשמת אפה של המתמטיקה. במסגרת הדיון במבנים אלגבריים נלקחים עצמים מתמטיים קונקרטיים, כגון המספרים השלמים או המספרים הממשיים, נבחנות תכונותיהם המופשטות ביותר, ותכונות אלה עוברות הכללה, כך שניתן לבחון באמצעותן מגוון רחב של עצמים מתמטיים שאף להם תכונות אלה. בדרך זו אפשר למקד את תשומת הלב בתכונות המהותיות של העצם שאותו חוקרים, ולקבל תוצאות כלליות שיהיו ישימות גם במקרים אחרים.

כאשר אין חשש לבלבול, המבנה האלגברי מזוהה עם הקבוצה. כך למשל, החבורה (1,*,G) קרויה בפשטות החבורה G. לפעולות המוגדרות במבנה האלגברי קוראים בדרך כלל "כפל" או "חיבור", משום שהאקסיומות כופות עליהן תכונות דומות לאלו של החיבור והכפל הרגילים. עם זאת, לעיתים קרובות האברים במבנה האלגברי אינם מספרים, וממילא הפעולות אינן אלו המוכרות מחיי היום-יום.

להלן מספר מבנים אלגבריים ידועים[1]:

מבנים אחרים כוללים שני מרכיבים:

לקריאה נוספת

הערות שוליים

  1. אחדים מהמושגים המופיעים להלן מוגדרים בערך פעולה בינארית
הערך באדיבות ויקיפדיה העברית, קרדיט,
רישיון cc-by-sa 3.0
This article is issued from Hamichlol. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.