חבורה ציקלית

בתורת החבורות, חבורה ציקלית היא חבורה הנוצרת על ידי איבר אחד. כלומר כל אחד מאברי החבורה הוא חזקה של האיבר היוצר. כל חבורה כזו היא אבלית לפי כללי חזקות וחילופיות פעולת החיבור.

חבורות ציקליות הן הדוגמה הפשוטה ביותר לחבורה, ולפי משפט המיון לחבורות אבליות נוצרות סופית, אפשר להרכיב מהן (באמצעות מכפלה ישרה) את החבורות האבליות הנוצרות סופית. אם מרשים הרכבה מסובכת יותר, אפשר לבנות מן החבורות הציקליות את כל החבורות הפתירות.

חבורות ציקליות הן דוגמה למושג הכללי יותר, מודול ציקלי.

הגדרה, יחידות וסימון

באופן פורמלי, חבורה ציקלית היא חבורה עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \ G} שבה קיים איבר שהחזקות שלו מרכיבות את החבורה כולה. לאיבר כזה קוראים יוצר של החבורה. כאשר משתמשים בכתיב כפלי, מקובל לסמן את החבורה הציקלית הנוצרת על ידי איבר עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \ g} בסימון .

כל שתי חבורות ציקליות בעלות אותו סדר הן איזומורפיות זו לזו, ולכן מוצדק לדבר על החבורה הציקלית מסדר n, בה"א הידיעה. כאשר רוצים להדגיש את סדר החבורה, מקובל לסמן את החבורה הציקלית הנוצרת על ידי איבר עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \ g} מסדר n, כ־עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \ \langle g|g^n=1 \rangle} ואפילו עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \ \langle g|g^n \rangle} (ראו חבורה מוצגת סופית).

החבורה האינסופית הכוללת את כל המספרים השלמים, ביחס לפעולת החיבור, היא ציקלית. כל איבר שלה מתקבל מסיכום היוצר לעצמו, מספר סופי של פעמים. חבורת המנה עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \ \mathbb{Z}/n\mathbb{Z}} , המורכבת מן המספרים עם פעולת החיבור מודולו המספר הטבעי עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \ n} , היא חבורה ציקלית מסדר עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \ n} , כאשר גם כאן הוא יוצר של החבורה. בהתאם לאיזומורפיזם של חבורות ציקליות מאותו סדר, נהוג להשתמש בחבורות אלו לייצוג כל החבורות הציקליות, כך שחבורה ציקלית מסדר עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \ n} מיוצגת על ידי הסימון עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \ \mathbb{Z}_n} (כלומר [1]), וכל חבורה ציקלית אינסופית מיוצגת על ידי הסימון .

בכל חבורה, תת־החבורה הנוצרת על ידי איבר אחד עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \ g} (ומורכבת, על־פי ההגדרה, מכל החזקות עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \ \{g^k : k\in \mathbb{Z}\}} ), היא חבורה ציקלית.

איברים

היוצר של חבורה ציקלית כמעט לעולם אינו יחיד. החבורה הציקלית האינסופית נוצרת על ידי או על ידי . לחבורה ציקלית מסדר עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \ n} יש עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \ \varphi(n)} יוצרים (כאשר עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \ \varphi} היא פונקציית אוילר), שהם בדיוק החזקות עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \ g^k} עבורן זר ל-עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \ n} .

באופן כללי יותר, ההסדר של איבר עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \ g^k} הוא , כאשר עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \ \gcd(n,k)} הוא המחלק המשותף המקסימלי של .

חבורת האוטומורפיזמים

מכיוון שאוטומורפיזם מוכרח להעביר יוצר של החבורה ליוצר אחר, יש לחבורה הציקלית מסדר עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \ n} בדיוק עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \ \varphi(n)} אוטומורפיזמים, וניתן להבחין שחבורת האוטומורפיזמים שלה איזומורפית לחבורת אוילר עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \ U_n} .

גאוס מצא שחבורת אוילר עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \ U_n} היא ציקלית בדיוק כאשר עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \ n} שווה ל־2, 4, חזקה של ראשוני אי־זוגי, או פעמיים חזקה של ראשוני אי־זוגי.

פירוק לגורמים

המכפלה הישרה של שתי חבורות ציקליות עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \ \mathbb{Z}/n\mathbb{Z} \times \mathbb{Z}/m\mathbb{Z}} היא חבורה ציקלית, אם ורק אם n ו- m זרים. במקרה זה, כמובן, היא איזומורפית ל־ . מן המשפט היסודי של האריתמטיקה נובע שאפשר לפרק כל חבורה ציקלית למכפלה ישרה של חבורות ציקליות שכל אחת מהן מסדר חזקה של ראשוני. למשל

הערות שוליים

  1. כאשר n=p מספר ראשוני נהוג להישאר עם הסימון הארוך עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \mathbb{Z}/p\mathbb{Z}} שכן הסימון עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \mathbb{Z}_p} מסמן את חוג השלמים ה-p-אדיים הנפוץ באלגברה מופשטת ותורת המספרים.
This article is issued from Hamichlol. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.