גז ואן דר ואלס

גז ואן דר ואלס הוא מודל פיזיקלי עבור תרמודינמיקה של זורם. המודל הוא הרחבה של מודל הגז האידיאלי, ובניגוד אליו לוקח בחשבון את הנפח שתופסים חלקיקי הגז, ואת האינטראקציה ביניהם. ההבדל האיכותי הגדול בין מודל זה למודל הגז האידיאלי, הוא שמודל גז ואן דר ואלס מסביר קיום של פאזה של גז לעומת פאזה של נוזל דחיס, ומדגים את מעברי הפאזה הקשורים לכך. המודל ואן דר ואלס משקף יותר טוב ממודל הגז האידיאלי התנהגות של גז אמיתי ולכן המודל נקרא לפעמים "גז ריאלי".

את המודל פיתח הפיזיקאי ההולנדי יוהנס דידריק ואן דר ואלס, במסגרת הדוקטורט אותו קיבל ב-1873.

משוואת המצב של גז ואן דר ואלס: גז ונוזל

משוואת המצב של גז ואן דר ואלס (ההסבר לגזירתה נתון בהמשך) היא:

או:

עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \left( P+a\frac{n^{2}}{V^{2}} \right)\left( V-nb \right)=nRT}

כאשר:

  • - לחץ הזורם
  • - הנפח
  • עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \ T} - טמפרטורה מוחלטת
  • עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \ N} - מספר החלקיקים
  • - מספר המולים
  • - קבוע בולצמן
  • - קבוע הגזים
  • - פרמטר שמייצג את מידת המשיכה בין החלקיקים
  • - פרמטר שמייצג את הנפח שתופס כל חלקיק

ו- הם גדלים שאפשר להעריך עבור כל חומר, ניתן למצוא אותם בקישור זה.

את השוני הגדול בין התנהגות גז ואן דר ואלס והתנהגות גז אידיאלי אפשר לראות מהאיזותרמות (הגרפים של הלחץ כנגד הנפח בטמפרטורה קבועה) שניתן לשרטט ממשוואת המצב. בגז ואן דר ואלס קיימת טמפרטורה קריטית: עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle T_C = \frac {8a}{27bR}}

עבור עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \ T > T_C } האיזותרמות יורדות מונוטונית, כמו במקרה של גז אידיאלי.
עבור יש באיזותרמה נקודת פיתול בנקודה שבה הנפח הקריטי והלחץ הקריטי הם עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle V_C = 3Nb \,\! } ,
הערה: נקודה זו תלויה במספר המולקולות עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \ N} רק דרך הביטוי עבור , ובצורה ליניארית, לכן מה שחשוב זה לאו הנפח עצמו, אלא הנפח הסגולי או הצפיפות.
עבור עיבוד הנוסחה נכשל (שגיאת המרה. השרת ("https://en.wikipedia.org/api/rest_") השיב: "Cannot get mml. Server problem."): {\displaystyle \ T<T_{C}} יש אזור בו הגרף עולה. אזור זה הוא לא פיזיקלי: אפשר לראות זאת אם חושבים על בוכנה שיש בתוכה גז ועליה משקולות. אם מסירים משקולת, שיווי המשקל מופר - הכוח שהגז מפעיל על הבוכנה גדול מהכוח שהמשקולות מפעילות על הבוכנה - הבוכנה עולה והנפח שהגז תופס גדל. כאשר האיזותרמה יורדת, עם הגדלת הנפח הלחץ יורד עד שהוא משתווה לכוח שהמשקולות שנותרו מפעילות, ונוצר שיווי משקל חדש. אולם אם האיזותרמה עולה, הרי שעם הגדלת הנפח הלחץ היה אמור דווקא לעלות, ושיווי משקל לא היה מושג לעולם.

לכן אזור באיזותרמה שעולה מתאר מצב אסור של המערכת (למעשה יש עוד אזור שמסביבו שגם אם הוא אפשרי הוא לא יציב, כפי שיתואר לעיל), כלומר בטמפרטורות שנמוכות מהטמפרטורה הקריטית יש תחום שלם של צפיפויות בהן הגז לא יכול להיות, וכך יש שני תחומים מובהקים ומופרדים של צפיפויות: התחום בעל הצפיפות הנמוכה ( גדול) הוא למעשה מה שמכונה גז, בעוד התחום בו הצפיפות גבוהה ( נמוך) הוא מה שמכונה נוזל. המודל מראה שהם שני צדדים של אותה תופעה. כמו כן אפשר לראות שמעל לטמפרטורה הקריטית למעשה אין הבחנה בין גז לנוזל.

עבור עיבוד הנוסחה נכשל (שגיאת המרה. השרת ("https://en.wikipedia.org/api/rest_") השיב: "Cannot get mml. Server problem."): {\displaystyle \ T<{\frac {27T_{C}}{32}}} יש אזור בו הגרף מתחת לאפס, בחלק ה'נוזלי' של הגז. אזור זה הוא לא פיזיקלי: הלחץ שהגז מפעיל לא יכול להיות שלילי.

אם מגדירים גדלים חסרי יחידות:

עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \hat{T} = \frac{T}{T_C} , \hat{P} = \frac{P}{P_C} , \hat{V} = \frac{V}{V_C} }

משוואת המצב הופכת ל:

עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \left(\hat{P}+ \frac{3}{\hat{V}^2} \right) \left(\hat{V}-\frac{1}{3}\right) =\frac{8}{3}\hat{T} }

כאשר בצורה הזו המשוואה לא תלויה במקדמים עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle a} ו עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle b} , וגם לא במספר החלקיקים עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle N} , (מה ששוב מדגיש שההתנהגות תלויה בצפיפות, ולא בנפח), ומגלה את אותה התנהגות איכותית ללא תלות בערכי המקדמים הספציפיים כל חומר.

מגז אידיאלי לגז ואן דר ואלס, האנרגיה החופשית של הלמהולץ

אפשר להגיע מגז אידיאלי לגז ואן-דר-ואלס דרך הביטוי עבור האנרגיה החופשית של הלמהולץ. עבור גז אידיאלי האנרגיה החופשית היא:

עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \ F_{ig} = -N k_B T\left[ \log{\left(n_Q(T) \frac{V}{N} \right) } + 1 \right] }

כאשר עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \ n_Q(T) = \left( \frac{m k_B T}{2 \pi \hbar^2} \right) ^{3/2}}

את עובדת היות החלקיקים לא נקודתיים, מתארים על ידי החלפת הנפח בנפח הפנוי האפקטיבי. מניחים שכל חלקיק תופס באופן אפקטיבי נפח b, ואז מחליפים את הנפח בביטוי לעיל ב עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle V-Nb } .

את המשיכה בין חלקיקי הגז מתארים בעזרת קירוב השדה הממוצע, שמניח שהשדה גורם לפוטנציאל ממוצע שפרופורציוני לצפיפות החלקיקים עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle N/V} . משום שמדובר בכוח משיכה הפוטנציאל הוא שלילי. כל חלקיק ששוהה בפוטנציאל כזה מוריד את האנרגיה הכללית, ולכן תלות האנרגיה במספר החלקיקים היא ריבועית (פעם בגלל תרומת כל חלקיק לפוטנציאל, ופעם כיוון שכל חלקיק ששוהה בפוטנציאל מוריד את האנרגיה). בסך הכול נוסף לביטוי כתוצאה מכך האיבר עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \ aN^2/V- } , כאשר הוא קבוע חיובי שמתאר את חוזק הכוח שמושך את החלקיקים.

לכן האנרגיה החופשית של הלמהולץ עבור גז ון-דר-ואלס היא

מביטוי זה אפשר להגיע למשוואת המצב, על פי

לעיתים כדאי להסתכל על עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle F} כפונקציה של הנפח הסגולי (שהוא אחד חלקי הצפיפות), ואז

עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle F(v,T,N) = -N k_B T\left[ \log{\left(n_Q(T) (v-b)\right) } + 1 \right] - a\frac{N}{v} } .

בצורה זו קל לראות שהאנרגיה החופשית פרופורציונית למספר החלקיקים.

תיקון האיזותרמות ומעבר פאזה

כאמור למעלה, לכל חומר שמצוי מתחת לטמפרטורה הקריטית יש תחום צפיפויות בהן הוא לא יכול להימצא. נשאלת השאלה - מה קורה אם מכריחים את החומר להיות בנפח בו הצפיפות הממוצעת שלו תהיה בתחום אסור זה? התשובה היא שבמצב כזה הוא יתפצל לשתי פאזות, כל אחת בצפיפות אחרת.

ניתן לראות זאת מתוך התבוננות בגרף של אנרגיה החופשית של הלמהולץ עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \ F\left(T,V\right)} , כנגד הנפח. כדאי להסתכל דווקא על האנרגיה החופשית של הלמהולץ כי היא הפוטנציאל התרמודינמי שהמשתנים הטבעיים שלו הם הנפח והטמפרטורה, ושהמערכת שואפת למינימום שלו כאשר הנפח והטמפרטורה שלה קבועים. עבור טמפרטורה גבוהה מהטמפרטורה הקריטית, הלחץ (שהוא מינוס הנגזרת של האנרגיה החופשית) יורד מונוטונית עם הנפח, לכן היא פונקציה קמורה של בכל מקום (כלומר, בניגוד למה שהשם מרמז, אם נחבר כל שתי נקודות על הגרף שלה בקו ישר, הוא יהיה כולו מעל הגרף). אבל מתחת לטמפרטורה הקריטית, כאשר יש אזור בו הלחץ עולה עם הנפח, באותו אזור יש קטע קעור בגרף של , כלומר אפשר לחבר שתי נקודות בגרף בעזרת קטע שעובר מתחת לגרף של הפונקציה, ולכך יש משמעות פיזיקלית חשובה:

זורם בעל עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \ N} חלקיקים שנמצא בכלי בעל נפח לא חייב להיות צפיפות אחידה, כלומר בנפח סגולי אחיד עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \ v=V/N} . הוא יכול להתחלק למשל לשני חלקים, בעלי עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \ N_a} ו- עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \ N_b} חלקיקים בנפחים סגוליים עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \ v_a} ועיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \ v_b} , שאחד גדול מ והשני קטן ממנו. במצב זה, האנרגיה החופשית הכוללת תהיה הערך שיתקבל בנפח אם נחליף את הגרף של בקו ישר שמחבר את הערכים שלו בצפיפויות השונות, כלומר את הנקודות בנפחים ו- עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \ Nv_b} והערכים המתאימים להם של . כאשר ערך זה נמוך מהערך המקורי של האנרגיה החופשית של הלמהולץ, כדאי מבחינה אנרגטית לחומר להתפצל לשתי הפאזות האלה, במקום להיות בצפיפות אחידה. המשמעות הגאומטרית היא שצריך להחליף את הגרף של בקמוֹר שלו.

במקרה של גז ואן דר ואלס המשמעות היא שיש קטע אחד (הקטע האדום, בין עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \ V_L} ל- עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \ V_G} באיור) שבו מוחלפת הפונקציה המקורית של האנרגיה החופשית בפונקציה ליניארית. מבחינת הלחץ, המשמעות היא החלפת הפונקציה של הלחץ, בקטע ישר ומאוזן (הקטע בתכלת) שהשטח הכלוא בינו לבין הגרף המקורי כשהוא מתחתיו, שווה לשטח שכלוא בינו לבין הגרף המקורי כשהוא מעליו. מבחינה פיזיקלית בתחום נפחים זה הלחץ נשאר קבוע במשך כל תהליך הגדלת הנפח (או הקטנתו), כאשר במקום שהלחץ ישתנה עם שינוי הנפח, משתנה היחס בין כמות הזורם שנמצא במצב בנוזלי לכמות שנמצאת במצב הגאזי.

הקטע כולל לא רק את הקטע ה"לא פיזיקאלי" בין ל עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \ V_2} , שבו קעורה והלחץ עולה עם הנפח, אלא גם שני קטעים משני הצדדים של הקטע ה"לא פיזיקאלי". בשני קטעים אלה הזורם יכול, אם הדבר נעשה בזהירות ותוך שמירה על אחידות התנאים בכל מקום, בכל זאת לא להתפצל, ולהישאר כולו במצב אחיד. תופעה זו נקראת "חימום יתר" ("superheating") או "קירור יתר" ("supercooling"). מצב זה הוא מטא-יציב, וכשהזורם נמצא בו, מספיק עירור קל בשביל לגרום לקפיצה למצב המפוצל, העדיף אנרגטית.

אולם בדרך כלל נפח המערכת הוא לאו דווקא הפרמטר דרכו משפיעים על מערכת כזו, אלא דווקא הלחץ או הטמפרטורה, לכן כדאי לבחון את הפוטנציאל התרמודינמי שאלה הם המשתנים הטבעיים שלו: האנרגיה החופשית של גיבס

.

לא ניתן לקבל ביטוי אנליטי לאנרגיה החופשית של גיבס, מכיוון שלא ניתן לקבל ביטוי אנליטי לעיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \ V\left(P\right)} , אולם ניתן לצייר גרפים כנגד הלחץ והטמפרטורה.

כאשר הטמפרטורה נמוכה מהטמפרטורה הקריטית, יש ערכים של הלחץ שיש להם כמה נפחים אפשריים, כלומר עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \ V\left(P\right)} אינו ביטוי חד ערכית, ולכן גם אינו ביטוי חד ערכי, ויש אזורים שבהם ייתכנו שלושה ערכים של האנרגיה חופשית עבור אותו לחץ. הערך הנמוך ביותר הוא כמובן העדיף אנרגטית. מעליו, בתחום הלחצים בין עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \ P_1} ל- עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \ P_2} , יש גם שתי זרועות שמתאימות לערכים המטא-סטביליים, (בהם קיים "קירור יתר" או "חימום יתר"), ומעליהן ענף שמתאים לאזור ה"לא פיזיקלי" באיזותרמות. אם עוקבים אחרי תהליך בו מגדילים את הלחץ של גז, מבחינת הגרף המשמעות היא התקדמות ימינה על בזרוע הגאזית של הגרף. בתחילה הלחץ גדל עד שהוא מגיע ל- עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \ P_{LG}} , הוא הלחץ בו מתרחש מעבר הפאזה. לרוב אכן החומר יעבור בתהליך ממושך למצב צבירה נוזלי, ובסוף התהליך "יעבור זרוע" בגרף לזרוע הנוזלית. כאמור ייתכן בתנאים מיוחדים שהוא ימשיך להיות גז במצב של "קירור יתר", והלחץ ימשיך לעלות, אולם הוא לא יכול לעבור בשום מקרה את עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \ P_2} בלי שתחול התעבות פתאומית, ומעבר למצב נוזלי. מבחינת הגרף, המשמעות היא קפיצה מהזרוע של גז בקירור יתר, לזרוע של נוזל.

תמונה דומה מתקבלת מהגרף של האנרגיה החופשית של גיבס כנגד הטמפרטורה. בלחצים שנמוכים מהלחץ הקריטי, גם הביטוי של הטמפרטורה כנגד הנפח אינו מונוטוני, ויש תחום טמפרטורות בו ייתכנו כמה צפיפויות, ובהתאם גם כמה ערכים של האנרגיה החופשית של גיבס. הגרף מאפשר לעקוב אחרי מעבר הפאזה על ידי העלאת או הורדת הטמפרטורה - הסיטואציה הנפוצה ביותר. אם לוקחים נוזל ומחממים אותו (בכלי סגור - על מנת למנוע אידוי, אבל בעל דפנות גמישות - לשמירת לחץ קבוע), הוא מתחמם עד טמפרטורת הרתיחה - היא הטמפרטורה בה שתי הזרועות של הגרף חותכות אחת את השנייה. גרפית המשמעות היא תזוזה ימינה על זרוע הנוזל (הזרוע השמאלית) של הגרף, עד לנקודת החיתוך. בטמפרטורה זו בדרך כלל יתחיל מעבר הפאזה, עד שכל הנוזל יהפוך לגז, והטמפרטורה תמשיך לעלות - כלומר יהיה מעבר לזרוע של הגז והמשך תזוזה ימינה עליה. אולם גם פה ייתכן מצב של חימום יתר -כלומר שאם יישמרו תנאים אחידים מספיק, הטמפרטורה של הנוזל תעלה מעל לטמפרטורת הרתיחה, עד שבפתאומיות הוא יהפוך לגז. מבחינה גרפית המשמעות היא המשכה על הזרוע הנוזלית גם מעבר לטמפרטורת הרתיחה.

חום כמוס

מעבר הפאזה אינו תהליך מיידי, אלא תהליך רצוף. במהלכו יש זרימה של חום מהמערכת או אליה. אפשר לחשב את כמות החום הזה על ידי חישוב האנטרופיה:

מכאן, במהלך מעבר הפאזה מנוזל לגז, בו הטמפרטורה נשארה קבועה, יש מעבר חום:

כאשר ו- הם הנפח הסגוליים של גז ונוזל בטמפרטורת הרתיחה. מכיוון שהנפח הסגולי של הגז גדול יותר, ביטוי זה חיובי, כלומר יש לספק חום על מנת להביא לרתיחה, ולעומת זאת חום זה משתחרר מהחומר לסביבה בעת עיבוי. חום זה קרוי חום כמוס. קיום החום הכמוס, ואי הרציפות בגרף של עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle S\left(T\right)} , מסווגים את מעבר הפאזה הזה כמעבר פאזה מסדר ראשון.

קישורים חיצוניים

ראו מדיה וקבצים בנושא זה בוויקישיתוף.

הערך באדיבות ויקיפדיה העברית, קרדיט,
רישיון cc-by-sa 3.0
This article is issued from Hamichlol. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.