אידמפוטנט

במתמטיקה, אידמפוטנט הוא איבר עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle e} של מבנה אלגברי המקיים את התכונה עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle e^2=e} . ההגדרה חלה גם על פונקציות: פונקציה היא אידמפוטנטית אם הפעלתה פעמיים שווה להפעלתה פעם אחת. לדוגמה, פעולת ערך מוחלט היא אידמפוטנטית שכן: עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle |-5| = ||-5||} . באלגברה מופשטת מושג זה משמש בעיקר בחקר אופרטורים של הטלה וסגירות.

את המונח אידמפוטנטיות טבע במאה ה-19 בנג'מין פירס בהקשר של איברים באלגברה שאינם משתנים כאשר הם מועלים בחזקה של מספר שלם חיובי. מדובר בהלחם באנגלית (idem + potence שיש לו אותה חזקה) אך תחום השימוש במונח, כמו גם הגדרתו, התרחבו.

הגדרה

במאגמה (קבוצה עם פעולה בינארית יחידה) ( • ,M) איבר הוא אידמפוטנטי אם: x • x = x.

איברים אידמפוטנטים - דוגמאות

  • המספר הטבעי 1 הוא איבר אידמפוטנטי ביחס לכפל היות ש 1 × 1 = 1 וכך גם 0: 0 × 0 = 0. יתר המספרים הטבעיים אינם מקיימים תכונה זו ולכן הכפל אינו פעולה אידמפוטנטית בקבוצת המספרים הטבעיים.
    באופן פורמלי במונואיד (×,עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \mathbb {N}} ) האיברים האידמפוטנטיים היחידים הם 0 ו-1.
  • במאגמה איבר היחידה e הוא אידמפוטנטי. מהגדרתו כאיבר אדיש: e = e • e . כך גם איבר האפס a, אם קיים, בשל תכונת הבליעה שלו: a = a • a.
  • בחבורה איבר היחידה הוא האיבר האידמפוטנטי היחידי:
    אם קיים x • x = x אז x • x = x • e ועל ידי הכפלה משמאל באיבר ההופכי נקבל x = e.
  • איחוד וחיתוך של כל שתי קבוצות x ו y הם אידמפוטנטים.
    באופן פורמלי: במונואידים (∪ ,(𝒫(E)) ו (∩ ,(𝒫(E)) של קבוצת החזקה E עם פעולת איחוד ∪ ופעולת חיתוך ∩ בהתאמה, כל האיברים הם אידמפוטנטים ולכן הפעולות ∪ ו ∩ הן אידמפוטנטיות.
  • במונואידים (∧, {0,1}) ו (∨, {0,1}) באלגברה בוליאנית עם הקשרים הלוגים של וגם ואו בהתאמה, כל האיברים הם אידמפוטנטים.

פונקציות אידמפוטנטיות - דוגמאות

הפונקציות הבאות הן אידמפוטנטיות: פונקציית הזהות, פונקציית הערך המוחלט, פונקציית הערך השלם, פונקציית תקרה, פונקציית קיטום.

בתורת החבורות: יוצרי החבורה, במרחב אפיני: הקְמוֹר, במרחב וקטורי: הטלה ובמרחב טופולוגי: הסְגוֹר והפְּנים הם אידמפוטנטים.

דוגמאות נוספות: כוכב קלין עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle V^*} ופלוס קלין ( כוכב קלין ללא איבר האפס V0).

אידמפוטנטים והמבנה של חוגים

באלגברה, אידמפוטנט הוא איבר e של חוג או של מבנה אלגברי אחר, המקיים את השוויון עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \ e^2 = e} .[1] פרט ל-0 (איבר האפס), שאינו נחשב בדרך כלל לאידמפוטנט, איבר היחידה הוא אידמפוטנט טריוויאלי; ואכן, האידמפוטנטים קרובים להיות איברי יחידה, לפחות באופן מקומי, וזה תפקידם בתורת המבנה של חבורות למחצה ושל חוגים.

בחוג, אידמפוטנטים e ו- f המקיימים את התנאי ef=fe=0 נקראים אידמפוטנטים אורתוגונליים. לדוגמה, אם e הוא אידמפוטנט, אז גם אידמפוטנט, והשניים אורתוגונליים זה לזה. אם אי-אפשר לפרק אידמפוטנט e לסכום של אידמפוטנטים אורתוגונליים, אז e הוא אידמפוטנט פרימיטיבי.

אידמפוטנטים מרכזיים

אידמפוטנט המתחלף עם כל אברי החוג נקרא אידמפוטנט מרכזי. הדוגמה הטיפוסית מופיעה בחוגים המתפרקים לסכום ישר: אם עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \ R = R_1 \oplus R_2} , אז הוא אידמפוטנט מרכזי. גם להפך, אם e אידמפוטנט מרכזי של R, אז אפשר לפרק , וזהו סכום ישר של תת-חוגים. (חוג שבו כל האידמפוטנטים מרכזיים נקרא חוג אבלי).

פירוק פירס

לכל אידמפוטנט e בחוג אסוציאטיבי R, גם אם אינו מרכזי, הוא תת-חוג של R, עם יחידה משלו - e. פירוק פירס של החוג הוא הפירוק לסכום ישר של חבורות עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \ R = eRe \oplus eR(1-e) \oplus (1-e)Re \oplus (1-e)R(1-e)} , שבו שני המרכיבים עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \ eRe} ו- הם תת-חוגים עם היחידות e ו- , ואילו שני האחרים הם בי-מודולים מעליהם (האחד ימני ושמאלי, והשני שמאלי וימני, בהתאמה).

הדוגמה הטיפוסית לאידמפוטנט שאינו מרכזי היא יחידת המטריצות עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \ e_{11}} בחוג מטריצות. פירוק פירס של אלגברת המטריצות נותן את ארבעת המרכיבים הטבעיים עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \ F e_{ij}} . באלגברת מטריצות עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \ \operatorname{M}_n(A)} , היחידות עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \ e_{ii}} הן אידמפוטנטים אורתוגונליים ופרימיטיביים שסכומם 1.

לפירוק פירס בכמה מחלקות לא אסוציאטיביות, ראו אלגברה אלטרנטיבית#הרחבות מרכזיות ופירוק פירס, אלגברת ז'ורדן#פירוק פירס, אלגברה עם חזקה אסוציאטיבית#פירוק פירס.

הרמת אידמפוטנטים

אם לכל איבר a של אידיאל A בחוג R, המשלים הפיך, ובנוסף לזה כל אידפוטנט של חוג המנה הוא מהצורה כאשר e אידמפוטנט של R, אז A הוא אידיאל מרים אידמפוטנטים. אם A הוא אידיאל כזה, אז אפשר להרים כל מערכת סופית או בת-מניה של אידמפוטנטים אורתוגונליים בחוג המנה, למערכת מתאימה ב-R (טענה זו אינה נכונה למערכות שמספר איבריהן אינו בן-מניה). בנוסף לזה אפשר להרים גם מערכות של יחידות מטריצות, וכך, אם חוג המנה הוא חוג מטריצות, זהו גם המבנה של החוג R עצמו.

כל אידיאל נילי הוא מרים אידמפוטנטים. אם R סגור בטופולוגיה ה-A-אדית, אז A מרים אידמפוטנטים. באופן כללי, אידיאל A המוכל ברדיקל ג'ייקובסון של החוג הוא אידיאל מרים אידמפוטנטים, אם ורק אם לכל מחובר ישר של R/A (כמודול מעל R) יש כיסוי פרויקטיבי (כיסוי פרויקטיבי של מודול M הוא מודול פרויקטיבי P עם הטלה עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \ f : P \rightarrow M} שהגרעין שלה הוא תת-מודול קטן).

בחוג קומוטטיבי מקסימלי (נקרא גם קומפקטי ליניארית[2]), רדיקל ג'ייקובסון מרים אידמפוטנטים; חוג מקסימלי הוא מכפלה סופית של חוגים מקסימליים מקומיים.

יחידות מטריצות

המטריצות עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \ e_{ij}} שיש להן 1 ברכיב ה-ij ואפס בכל מקום אחר, מהוות בסיס סטנדרטי של אלגברת המטריצות. מטריצות אלה מקיימות את היחסים ו-. כל קבוצת איברים בחוג המקיימת את היחסים האלה נקראת מערכת של יחידות מטריצות. חוג שיש בו מערכת של יחידות מטריצות הוא בהכרח חוג מטריצות מעל חוג אחר. האיברים עיבוד הנוסחה נכשל (MathML עם גיבוי SVG או PNG (מומלץ לדפדפנים מודרניים ולכלי נגישות): תגובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \ e_{ii}} הם אידמפוטנטים אורתוגונליים.

במדעי המחשב

פרק זה לוקה בחסר. אנא תרמו למכלול והשלימו אותו.

משמעות המושג היא תלויית הקשר:

בתכנות אימפרטיבי שגרה היא אידמפוטנטית אם מצב המערכת נותר זהה ללא קשר למספר ההפעלות של שגרה זו. דוגמה: שגרה של חיפוש שם לקוח בבסיס נתונים תיתן תוצאה זהה ללא קשר למספר הקריאות. כך גם שגרת מיון נתונים - תוצאת המיון הראשון לא תשתנה. שגרה להוספת רשומת קנייה של סחורה אינה אידמפוטנטית (כל קריאה לה תוסיף עוד קנייה), אך שגרת ביטול קניה מסוימת היא אידמפוטנטית.

קישורים חיצוניים

הערות שוליים

  1. אידמפוטנט, באתר MathWorld (באנגלית)
  2. חוג הוא קומפקטי ליניארית אם כאשר לכל תת-קבוצה סופית של מערכת משוואות יש פתרון, אז יש פתרון גם למערכת כולה
This article is issued from Hamichlol. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.