NP-полная задача

NP-полная задача — в теории алгоритмов задача с ответом «да» или «нет» из класса NP, к которой можно свести любую другую задачу из этого класса за полиномиальное время (то есть при помощи операций, число которых не превышает некоторого полинома в зависимости от размера исходных данных). Таким образом, NP-полные задачи образуют в некотором смысле подмножество «типовых» задач в классе NP: если для какой-то из них найден «полиномиально быстрый» алгоритм решения, то и любая другая задача из класса NP может быть решена так же «быстро».

Формальное определение

Алфавитом называется всякое конечное множество символов (например, { } или { }). Множество всех возможных слов (конечных строк, составленных из символов этого алфавита) над некоторым алфавитом обозначается . Языком над алфавитом называется всякое подмножество множества , то есть .

Задачей распознавания для языка называется определение того, принадлежит ли данное слово языку .

Пусть и  — два языка над алфавитом . Язык называется сводимым (по Карпу) к языку , если существует функция, , вычислимая за полиномиальное время, обладающая следующим свойством:

  • тогда и только тогда, когда . Сводимость по Карпу обозначается как или .

Язык называется NP-трудным, если любой язык из класса NP сводится к нему. Язык называют NP-полным, если он NP-труден, и при этом сам лежит в классе NP.

Неформально говоря, то что задача сводится к задаче , означает, что задача «не сложнее» задачи (так как, если мы можем решить , то можем решить и ). Таким образом, класс NP-трудных задач включает NP-полные задачи и задачи, которые «сложнее» их (то есть те задачи, к которым могут быть сведены NP-полные задачи). Класс NP включает NP-полные задачи и задачи, которые «легче» их (то есть те задачи, которые сводятся к NP-полным задачам).

Из определения следует, что, если будет найден алгоритм, решающий некоторую (любую) NP-полную задачу за полиномиальное время, то все NP-задачи окажутся в классе P, то есть будут решаться за полиномиальное время.

NP-полнота в сильном смысле

Задача называется NP-полной в сильном смысле, если у неё существует подзадача, которая:

  1. не является задачей с числовыми параметрами (то есть максимальное значение величин, встречающихся в этой задаче, ограничено сверху полиномом от длины входа),
  2. принадлежит классу NP,
  3. является NP-полной.

Класс таких задач называется NPCS. Если гипотеза P ≠ NP верна, то для NPCS-задачи не существует псевдополиномиального алгоритма.

Гипотеза P ≠ NP

Вопрос о совпадении классов P и NP уже более 30 лет является открытой проблемой. Научное сообщество склоняется к отрицательному ответу на этот вопрос[1] — в этом случае решать NP-полные задачи за полиномиальное время не удастся.

Примеры NP-полных задач

См. также

Примечания

  1. William I. Gasarch. The P=?NP poll. (неопр.) // SIGACT News. — 2002. Т. 33, № 2. С. 34—47. — DOI:10.1145/1052796.1052804.
  2. Erik D. Demaine, Susan Hohenberger, David Liben-Nowell. Tetris is Hard, Even to Approximate (англ.). preprint.

Литература

  • Томас Х. Кормен и др. Глава 34. NP-полнота // Алгоритмы: построение и анализ = Introduction to Algorithms. — 2-е изд. М.: «Вильямс», 2006. — 1296 с. — ISBN 0-07-013151-1.
  • Джон Хопкрофт, Раджив Мотвани, Джеффри Ульман. Введение в теорию автоматов, языков и вычислений = Introduction to Automata Theory, Languages, and Computation. М.: «Вильямс», 2002. — 528 с. — ISBN 0-201-44124-1.

Ссылки


This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.