Гальванический элемент

Гальвани́ческий элеме́нт — химический источник электрического тока, основанный на взаимодействии двух металлов и/или их оксидов в электролите, приводящем к возникновению в замкнутой цепи электрического тока. Назван в честь Луиджи Гальвани. Переход химической энергии в электрическую энергию происходит в гальванических элементах.

Схема гальванического элемента Даниэля-Якоби
Обозначение гальванического элемента на принципиальных электрических схемах

История изучения гальванических процессов

Луиджи Гальвани

Явление возникновения электрического тока при контакте разных металлов было открыто итальянским физиологом, профессором медицины Болонского университета (г. Болонья, Италия) — Луиджи Гальвани в 1786 году: Гальвани описал процесс сокращения мышц задних лапок свежепрепарированной лягушки, закреплённых на медных крючках, при прикосновении стального скальпеля. Наблюдения были истолкованы первооткрывателем как проявление «животного электричества».

Итальянский физик и химик Алессандро Вольта, заинтересовавшись опытами Гальвани, увидел совершенно новое явление — создание потока электрических зарядов. Проверяя точку зрения Гальвани, А. Вольта проделал серию опытов и пришёл к выводу, что причиной сокращения мышц служит не «животное электричество», а наличие цепи из разных проводников в жидкости. В подтверждение — А. Вольта заменил лапку лягушки изобретённым им электрометром и повторил все действия. В 1800 году А. Вольта впервые публично заявляет о своих открытиях на заседании Лондонского королевского общества, что проводник второго класса (жидкий) находится в середине и соприкасается с двумя проводниками первого класса из двух различных металлов… Вследствие этого возникает электрический ток того или иного направления.

В 1802 году русский физик Василий Владимирович Петров сконструировал самую большую в мире гальваническую батарею, состоявшую из 4200 медных и цинковых кружков диаметром около 35 миллиметров и толщиной около 2,5 миллиметра, между которыми были размещены бумажные, пропитанные раствором нашатыря. Именно Петровым впервые была применена изоляция (с помощью сургуча). Вся конструкция была помещена в ящик из твердой древесины красного дерева, покрытый изолирующим слоем из различных смол[1]. По современным оценкам батарея Петрова давала напряжение около 1500В.[2] Русский учёный исследовал свойства этой батареи как источника тока и показал, что действие её основано на химических процессах между металлами и электролитом. М. А. Шателен отмечал, что опыты Петрова можно считать исследованиями, положившими начало современной электрометаллургии в дуговых печах.[3] Построенную им батарею Петров использовал для построения электрической дуги. Результаты его работы были подробно изложены в труде «Известия о гальвани-вольтовских опытах»,[4] увидевшем свет в 1803 году.[5][6]

Виды электродов

В состав гальванического элемента входят электроды. Электроды бывают:

Обратимые электроды

  • Электроды 1-го рода — электроды, состоящие из металла, погружённого в раствор его соли;
  • Электроды 2-го рода — электрод, состоящий из металла, покрытого труднорастворимой солью этого же металла, погружённый в раствор соли, который содержит общий анион с нерастворимой солью (хлорсеребряный электрод, каломельный электрод, металл-оксидные электроды);
  • Электроды 3-го рода — электроды, состоящие из двух нерастворимых осадков электролитов: в менее растворимом есть катион, который образуется из металла электрода, а в более растворимом — есть общий анион с первым осадком;
  • Газовые электроды — электроды, состоящие из неактивного металла в растворе и газа (кислородный электрод, водородный электрод);
  • Амальгамные электроды — электроды, состоящие из раствора металла в ртути;
  • Окислительно-восстановительные электроды — электроды, состоящие из неактивного металла (ферри-ферро-электрод, хингидронный электрод).

Ионоселективные мембранные электроды

  • Электроды с ионообменной мембраной с фиксированными зарядами — стеклянный электрод;
  • Электроды, состоящие из жидких ассоциированных ионитов;
  • Электроды с мембраной на основе мембраноактивных комплексонов;
  • Электроды с моно- и поликристаллической мембранами.

Характеристики гальванических элементов

Гальванические элементы характеризуются электродвижущей силой (ЭДС), ёмкостью; энергией, которую он может отдать во внешнюю цепь; сохраняемостью.

  • Электродвижущая сила (ЭДС) гальванического элемента зависит от материала электродов и состава электролита. ЭДС описывается термодинамическими функциями протекающих электрохимических процессов в виде уравнения Нернста.
  • Электрическая ёмкость элемента — это количество электричества, которое источник тока отдаёт при разряде. Ёмкость зависит от массы реагентов, запасённых в источнике, и степени их превращения; снижается с понижением температуры или увеличением разрядного тока.
  • Энергия гальванического элемента численно равна произведению его ёмкости на напряжение. С увеличением количества вещества реагентов в элементе и до определённого предела, с увеличением температуры, энергия возрастает. Энергию уменьшает увеличение разрядного тока.
  • Сохраняемость — это срок хранения элемента, в течение которого его характеристики остаются в заданных пределах. Сохраняемость элемента уменьшается с ростом температуры хранения.

Классификация гальванических элементов

Использованные источники питания различных типов и размеров

Гальванические первичные элементы — это устройства для прямого преобразования химической энергии, заключенных в них реагентов (окислителя и восстановителя), в электрическую. Реагенты, входящие в состав источника, расходуются в процессе его работы, и действие прекращается после расхода реагентов. Примером гальванического элемента является элемент Даниэля—Якоби.

Широкое распространение получили марганцево-цинковые элементы, не содержащие жидкого раствора электролита (сухие элементы, батарейки). Так, в солевых элементах Лекланше: цинковый электрод служит катодом, электрод из смеси диоксида марганца с графитом служит анодом, графит служит токоотводом. Электролитом является паста из раствора хлорида аммония с добавкой муки или крахмала в качестве загустителя.

Щелочные марганцево-цинковые элементы, в которых в качестве электролита используется паста на основе гидроксида калия, обладают целым рядом преимуществ (в частности, существенно большей ёмкостью, лучшей работой при низких температурах и при больших токах нагрузки).

Солевые и щелочные элементы широко применяются для питания радиоаппаратуры и различных электронных устройств.

Литий-ионный аккумулятор сотового телефона

Вторичные источники тока (аккумуляторы) — это устройства, в которых электрическая энергия внешнего источника тока превращается в химическую энергию и накапливается, а химическая — снова превращается в электрическую.

Одним из наиболее распространённых аккумуляторов является свинцовый (или кислотный). Электролитом является 25—30 % раствор серной кислоты. Электродами кислотного аккумулятора являются свинцовые решётки, заполненные оксидом свинца, который при взаимодействии с электролитом превращается в сульфат свинца (II) — PbSO4.

Также существуют щелочные аккумуляторы: наибольшее применение получили никель-кадмиевые и никель-металлгидридные аккумуляторы, в которых электролитом служит гидроксид калия (K-OH).

В различных электронных устройствах (мобильные телефоны, планшеты, ноутбуки), в основном, применяются литий-ионные и литий-полимерные аккумуляторы, характеризующиеся высокой ёмкостью и отсутствием эффекта памяти.

Электрохимические генераторы (топливные элементы) — это элементы, в которых происходит превращение химической энергии в электрическую. Окислитель и восстановитель хранятся вне элемента, в процессе работы непрерывно и раздельно подаются к электродам. В процессе работы топливного элемента, электроды не расходуются. Восстановителем является водород (H2), метанол (CH3OH), метан (CH4); в жидком или газообразном состоянии. Окислителем обычно является кислород — из воздуха или чистый. В кислородно-водородном топливном элементе с щелочным электролитом, происходит превращение химической энергии в электрическую. Энергоустановки применяются на космических кораблях: они обеспечивают энергией космический корабль и космонавтов.

Применение

  • Гальванические элементы используются в системе сигнализации, фонарях, часах, калькуляторах, аудиосистемах, игрушках, радио, автооборудовании, пультах дистанционного управления, компьютерах.
  • Аккумуляторы используются для запуска двигателей машин; возможно так же и применение в качестве временных источников электроэнергии в местах, удалённых от населенных пунктов.
  • Топливные элементы применяются в производстве электрической энергии (на электрических станциях), аварийных источниках энергии, автономном электроснабжении, транспорте, бортовом питании, мобильных устройствах.

Нередко, химические источники тока применяются в составе батарей (батареек).

См. также

Примечания

  1. Бастион. Батарея Василия Петрова. «Бастион». Дата обращения 9 февраля 2019.
  2. Батарея Василия Петрова. www.powerinfo.ru. Дата обращения 9 февраля 2019.
  3. Шателен М. А. Русские электротехники второй половины XIX века. — Москва: Издательство и типография Госэнергоиздата, 1949. — С. 49. — 380 с.
  4. Петров В. В. ИЗВѢСТІЕ о гальвани-вольтовскихъ опытахъ, которые производилъ профессоръ физики Василій Петровъ. — Санкт-Петербургъ: Типографія Государственной Медицинской Коллегіи, 1803.
  5. Физик Василий Владимирович Петров: биография, открытия, изобретения (рус.)  (неопр.) ?. Электрознаток (28 июня 2017). Дата обращения 9 февраля 2019.
  6. «Огромная наипаче» батарея Василия Петрова. Мир электричества (недоступная ссылка). librolife.ru. Дата обращения 9 февраля 2019. Архивировано 9 февраля 2019 года.

Литература

  • Ахметов Н. С. Общая и неорганическая химия
  • Аксенович Л. А. Физика в средней школе: Теория. Задания.
  • Еремин В. В., Каргов С. И., Успенская И. А., Кузменко Н. Е., Лунин В. В. Основы физической химии. Теория и задачи: учебное пособие для вузов

Ссылки

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.