Sistema de numeração hexadecimal

O sistema hexadecimal é um sistema de numeração posicional que representa os números em base 16, portanto empregando 16 símbolos.

Está vinculado a informática, pois os computadores costumam utilizar o byte ou octeto como unidade básica da memória; e, devido a um byte representar valores possíveis, e isto poder representar-se como , o que, segundo o teorema geral da numeração posicional, equivale ao número em base 16 , dois dígitos hexadecimais correspondem exactamente —permitem representar a mesma linha de inteiros— a um byte.

Ele é muito utilizado para representar números binários de uma forma mais compacta, pois é muito fácil converter binários pra hexadecimal e vice-versa. Dessa forma, esse sistema é bastante utilizado em aplicações de computadores e microprocessadores (programação, impressão e displays).

Devido ao sistema decimal geralmente usado para a numeração apenas dispor de dez símbolos, deve-se incluir seis letras adicionais para completar o sistema. O conjunto de símbolos fica, portanto, assim

Contagem em Hexadecimal

Assim como nos outros sistemas numéricos, após o uso de todos os dígitos hexadecimais, se inicia a repetição com a adição de outro dígito: (...) 8, 9,A(10), B(11), C(12), D(13), E(14), F(15), ... Pode parecer pouca a diferença para os números decimais, porém esses 6 dígitos a mais fazem muita diferença. Por exemplo, com dois dígitos, em decimal, é possível fazer 100 combinações diferentes. Em hexadecimal, esse número sobe para 256.

Conversão de Binário para Hexadecimal

Um dígito em hexadecimal pode representar um número binário de 4 dígitos, dessa forma, para transformar um binário em hexadecimal, separamos o binário em grupos de 4 bits, começando pela direita.

Exemplo:

Binário: 1101000101100011.

1º - separar em grupos de quatro bits:

1101 0001 0110 0011

2º - identificar os números hexadecimais correspondentes:

1101 = D
0001 = 1
0110 = 6
0011 = 3

Hexadecimal: D163.

Conversão de Hexadecimal para Binário

É o inverso do processo anterior. Cada digito será transformado em um número binário de 4 bits.

Exemplo:
Hexadecimal: F2A7

F = 1111
2 = 0010
A = 1010
7 = 0111

Binário: 1111001010100111.

Conversão de Decimal para Hexadecimal

Ver-se-á um exemplo numérico para obter o valor de uma representação hexadecimal: 3E0A(16) = 3×163 + E×162 + 0×161 + A×160 = 3×4096  + 14×256 + 0×16 + 10×1 = 15882

Exemplos para obter um número hexadecimal de um número decimal:

Divide-se o número decimal por 16. 
           
          85|_16
        - 80   5,3125  Pode-se perceber que contém vírgula nesta divisão,porém, utilizaremos 
          --           apenas o quociente (5) e resto da divisão antes da vírgula (5), 
          050          Não esquecendo de colocar o quociente primeiro e depois o resto.
         - 48          Decimal 85 = 55(hex)
           --
           020         79|_16       O número 79 também contêm vírgula. Pegamos 4  
          - 16       - 64   4,9375  e 15 que é igual a F.
            --         --           Decimal 79 = 4F(hex) 
            040        15
           - 32        .
             --        .
             080
            - 80
              --
               0

Adição Hexadecimal

É possível realizar adições diretamente com números hexadecimais. Basta lembrar que os dígitos 0-9 equivalem aos mesmos em decimal, e que os dígitos a-f equivalem aos decimais 10-15. Assim como na soma de decimais, devemos começar pela direita.

  1. Realize a soma por colunas, e pense nos valores decimais dos dígitos
  2. Se a soma dos dígitos for menor que 15 (em decimal), registre o valor (em hexadecimal)
  3. Se a soma dos dígitos for maior que 15, subtraia 16 do resultado, registre o numero hexadecimal e gere um carry na próxima coluna
Exemplo:

com carry de 1. Então:

Tabela de conversão entre hexadecimal, decimal, octal e binário

0hex=0dec=0oct0000
1hex=1dec=1oct0001
2hex=2dec=2oct0010
3hex=3dec=3oct0011
4hex=4dec=4oct0100
5hex=5dec=5oct0101
6hex=6dec=6oct0110
7hex=7dec=7oct0111
8hex=8dec=10oct1000
9hex=9dec=11oct1001
Ahex=10dec=12oct1010
Bhex=11dec=13oct1011
Chex=12dec=14oct1100
Dhex=13dec=15oct1101
Ehex=14dec=16oct1110
Fhex=15dec=17oct1111

Fracções

As fracções, no seu desenvolvimento hexadecimal, não são exactas a menos que o denominador seja potência de 2. Contudo, os períodos não costumam ser muito complicados.

1/2 = 0,8
1/3 = 0,55...
1/4 = 0,4
1/5 = 0,33...
1/6 = 0,2AA...
1/7 = 0,249249...
1/8 = 0,2
1/9 = 0,1C1C...
1/A = 0,199...
1/B = 0,1745D1745D...
1/C = 0,155...
1/D = 0,13B13B...
1/E = 0,1249249...
1/F = 0,11...

Tabela de multiplicação

01 2 34 5 67 8 9A B CD E F10
00000 000000000 000
11234 56789ABCD EF10
22468 ACE10121416181A 1C1E20
3369C F1215181B1E21 24272A2D30
448C10 14181C2024282C 3034383C40
55AF14 191E23282D3237 3C41464B50
66C1218 1E242A30363C42 484E545A60
77E151C 232A31383F464D 545B626970
88101820 28303840485058 6068707880
99121B24 2D363F48515A63 6C757E8790
AA141E28 323C46505A646E 78828C96A0
BB16212C 37424E58636E79 848F9AA5B0
CC182430 3C4854606C7884 909CA8B4C0
DD1A2734 414E5B6875828F 9CA9B6C3D0
EE1C2A38 465462707E8C9A A8B6C4D2E0
FF1E2D3C 4B5A69788796A5 B4C3D2E1F0
1010203040 5060708090A0B0 C0D0E0F0100

Referências

    • FLOYD, Thomas L. Sistemas digitais: fundamentos e aplicações. Porto Alegre: Bookman, 2007. 888 p. + 2 CD-ROMs ISBN 9788560031931.

    Ver também

    This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.