Dimensão

Na física e na matemática, a dimensão de um espaço matemático (ou objeto) é informalmente definida como o número mínimo de coordenadas necessárias para especificar qualquer ponto dentro dela.[nota 1] Assim, uma reta tem uma dimensão de um (1) porque apenas uma coordenada é necessária para especificar um ponto nela – por exemplo, o ponto no 5 em uma reta numérica. Uma superfície como um plano ou a superfície de um cilindro ou esfera tem uma dimensão de dois porque duas coordenadas são necessárias para especificar um ponto nela – por exemplo, uma latitude e uma longitude são necessárias para localizar um ponto na superfície de uma esfera. O interior de um cubo, um cilindro ou uma esfera é tridimensional porque são necessárias três coordenadas para localizar um ponto dentro desses espaços.

Na mecânica clássica, espaço e tempo são categorias diferentes e referem-se a espaço e tempo absolutos. Essa concepção do mundo é um espaço de quatro dimensões, mas não o que foi considerado necessário para descrever o eletromagnetismo. As quatro dimensões do espaço-tempo consistem em eventos que não são absolutamente definidos espacial e temporalmente, mas são conhecidos em relação ao movimento de um observador. O espaço de Minkowski primeiro se aproxima do universo sem gravidade; as variedades pseudo-riemannianas da relatividade geral descrevem o espaço-tempo com a matéria e a gravidade. Dez dimensões são usadas para descrever a teoria das cordas, onze dimensões podem descrever a supergravidade e a teoria-M, e o espaço de estados da mecânica quântica é um espaço de função de dimensão infinita.

O conceito de dimensão não se restringe a objetos físicos. Espaços de alta dimensão frequentemente ocorrem na matemática e nas ciências. Eles podem ser espaços de parâmetros ou espaços de configuração, como na mecânica lagrangiana ou hamiltoniana; estes são espaços abstratos, independentes do espaço físico em que vivemos.

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.