3-sphère

En mathématiques, et plus précisément en géométrie, une 3-sphère est l'analogue d'une sphère en dimension supérieure. C'est l'ensemble des points équidistants d'un point central fixé dans un espace euclidien à 4 dimensions. Tout comme une sphère ordinaire (ou 2-sphère) est une surface bidimensionnelle formant la frontière d'une boule en trois dimensions, une 3-sphère est un objet à trois dimensions formant la frontière d'une boule à quatre dimensions. Une 3-sphère est un exemple de variété (différentielle) de dimension 3. Les 3-sphères sont aussi fréquemment appelées des hypersphères, mais ce terme peut en général être utilisé pour décrire n'importe quelle n-sphère pour n ≥ 3.

Projection stéréographique des parallèles (en rouge) des méridiens (en bleu) et des hyperméridiens (en vert) de l'hypersphère : ce sont les lignes sur lesquelles une seule des coordonnées hypersphériques varie (voir le texte). À cause des propriétés conformes de la projection stéréographique, les courbes se coupent orthogonalement (aux points jaunes), comme en 4D. Ce sont toutes des cercles, avec la convention que celles qui passent par <0,0,0,1> sont de rayon infini (des droites).
Cet article est issu de Wikipedia. Le texte est sous licence Creative Commons - Attribution - Sharealike. Des conditions supplémentaires peuvent s'appliquer aux fichiers multimédias.