28 cobaltnickelcopper


Periodic Table - Extended Periodic Table
Name, Symbol, Number nickel, Ni, 28
Chemical series transition metals
Group, Period, Block 10, 4, d
Appearance lustrous, metallic and silvery with a gold tinge
Atomic mass 58.6934(2) g/mol
Electron configuration [Ar] 4s2 3d8
Electrons per shell 2, 8, 16, 2
Physical properties
Phase solid
Density (near r.t.) 8.908 g·cm−3
Liquid density at m.p. 7.81 g·cm−3
Melting point 1728 K
(1455 °C, 2651 °F)
Boiling point 3186 K
(2913 °C, 5275 °F)
Heat of fusion 17.48 kJ·mol−1
Heat of vaporization 377.5 kJ·mol−1
Heat capacity (25 °C) 26.07 J·mol−1·K−1
Vapor pressure
P/Pa 1 10 100 1 k 10 k 100 k
at T/K 1783 1950 2154 2410 2741 3184
Atomic properties
Crystal structure face centered cubic
Oxidation states 2, 3
(mildly basic oxide)
Electronegativity 1.91 (Pauling scale)
Ionization energies
1st: 737.1 kJ·mol−1
2nd: 1753.0 kJ·mol−1
3rd: 3395 kJ·mol−1
Atomic radius 135 pm
Atomic radius (calc.) 149 pm
Covalent radius 121 pm
Van der Waals radius 163 pm
Magnetic ordering ferromagnetic
Electrical resistivity (20 °C) 69.3 nΩ·m
Thermal conductivity (300 K) 90.9 W·m−1·K−1
Thermal expansion (25 °C) 13.4 µm·m−1·K−1
Speed of sound (thin rod) (r.t.) 4900  m·s−1
Young's modulus 200 GPa
Shear modulus 76 GPa
Bulk modulus 180 GPa
Poisson ratio 0.31
Mohs hardness 4.0
Vickers hardness 638 MPa
Brinell hardness 700 MPa
CAS registry number 7440-02-0
Selected isotopes
Main article: Isotopes of nickel
iso NA half-life DM DE (MeV) DP
56Ni syn 6.075 d ε - 56Co
γ 0.158, 0.811 -
58Ni 68.077% Ni is stable with 30 neutrons
59Ni syn 76000 y ε - 59Co
60Ni 26.233% Ni is stable with 32 neutrons
61Ni 1.14% Ni is stable with 33 neutrons
62Ni 3.634% Ni is stable with 34 neutrons
63Ni syn 100.1 y β- 0.0669 63Cu
64Ni 0.926% Ni is stable with 36 neutrons

Nickel (IPA: /ˈnɪkəl/) is a metallic chemical element in the periodic table that has the symbol Ni and atomic number 28.





Nickel is a silvery white metal that takes on a high polish. It belongs to the transition metals, and is hard and ductile. It occurs combined with sulfur in millerite, with arsenic in the mineral niccolite, and with arsenic and sulfur in nickel glance.

Because of its permanence in air and its inertness to oxidation, it is used in coins, for plating iron, brass, etc., for chemical apparatus, and in certain alloys, such as German silver. It is magnetic, and is very frequently accompanied by cobalt, both being found in meteoric iron. It is chiefly valuable for the alloys it forms, especially many superalloys.

Nickel is one of the five ferromagnetic elements. However, the U.S. "nickel" coin is not magnetic, because it actually is mostly (75%) copper. The Canadian nickel minted at various periods between 1922-81 was 99.9% nickel, and these were magnetic.

The most common oxidation state of nickel is +2, though 0, +1, +3 and +4 Ni complexes are observed. It is also thought that a +6 oxidation state may exist, however, results are inconclusive.

The unit cell of nickel is an FCC with a lattice parameter of 0.356 nm giving a radius of the atom of 0.126 nm.

Nickel-62 is the most stable nuclide of all the existing elements; it is more stable even than Iron-56.



The use of Nickel is ancient, and can be traced back as far as 3500 BC. Bronzes from what is now Syria had a nickel content of up to two percent. Further, there are Chinese manuscripts suggesting that "white copper" (e.g. baitung) was used in the Orient between 1400 and 1700 BC. However, because the ores of nickel were easily mistaken for ores of silver, any understanding of this metal and its use dates to more contemporary times.

Minerals containing nickel (e.g. kupfernickel, meaning copper of the devil ("Nick"), or false copper) were of value for colouring glass green. In 1751, Baron Axel Fredrik Cronstedt was attempting to extract copper from kupfernickel (now called niccolite), and obtained instead a white metal that he called nickel.

Coins of pure nickel were first used in 1881 in Switzerland. [1]


Biological role

Although not recognized until the 1970s, nickel plays numerous roles in biology. In fact, the first protein ever crystallized, urease contains nickel, which assists in the hydrolysis of urea. The NiFe-hydrogenases contain nickel in addition to iron-sulfur clusters. Such [NiFe]-hydrogenases characteristically oxidise H2. A nickel-tetrapyrrole coenzyme, F430, is present in the methyl coenzyme M reductase which powers methanogenic archaea.

One of the carbon monoxide dehydrogenase enzymes consists of an Fe-Ni-S cluster.[1]

Other nickel-containing enzymes include a class of superoxide dismutase[2] .and a glyoxalase.[3]



The bulk of the nickel mined comes from two types of ore deposits. The first are laterites where the principal ore minerals are nickeliferous limonite: (Fe,Ni)O(OH) and garnierite (a hydrous nickel silicate): (Ni,Mg)3Si2O5(OH). The second are magmatic sulfide deposits where the principal ore mineral is pentlandite: (Ni,Fe)9S8.

In terms of supply, the Sudbury region of Ontario, Canada, produces about 30 percent of the world's supply of nickel.The Sudbury Basin deposit is theorized to have been created by a massive meteorite impact event early in the geologic history of Earth. Russia contains about 40% of the world's known resources at the massive Norilsk deposit in Siberia. The Russian mining company MMC Norilsk Nickel mines this for the world market, as well as the associated palladium. Other major deposits of nickel are found in New Caledonia, Australia, Cuba, and Indonesia. The deposits in tropical areas are typically laterites which are produced by the intense weathering of ultramafic igneous rocks and the resulting secondary concentration of nickel bearing oxide and silicate minerals. A recent development has been the exploitation of a deposit in western Turkey, especially convenient for European smelters, steelmakers and factories. The one locality in the United States where nickel is commercially mined is Riddle, Oregon, where several square miles of nickel-bearing garnierite surface deposits are located.

Based on geophysical evidence, most of the nickel on Earth is postulated to be concentrated in the Earth's core.



Nickel is used in many industrial and consumer products, including stainless steel, magnets, coinage, and special alloys. It is also used for plating and as a green tint in glass. Nickel is pre-eminently an alloy metal, and its chief use is in the nickel steels and nickel cast irons, of which there are innumberable varietes. It is also widely used for many other alloys, such as nickel brasses and bronzes, and alloys with copper, chromium, aluminum, lead, cobalt, silver, and gold.

Nickel consumption can be summarized as: nickel steels (60%), nickel-copper alloys and nickel silver (14%), malleable nickel, nickel clad and Inconel (9%), plating (6%), nickel cast irons (3%), heat and electric resistance alloys (3%), nickel brasses and bronzes (2%), others (3%).

In the laboratory, nickel is frequently used as a catalyst for hydrogenation, most often using Raney nickel, a finely divided form of the metal.


Extraction and purification

Nickel can be recovered using extractive metallurgy. Most lateritic ores have traditionally been processed using pyrometallurgical techniques to produce a matte for further refining. Recent advances in hydrometallurgy have resulted in recent nickel processing operations being developed using these processes. Most sulphide deposits have traditionally been processed by concentration through a froth flotation process followed by pyrometallurgical extraction. Recent advances in hydrometallurgical processing of sulphides has led to some recent projects being built around this technology.

Nickel is extracted from its ores by conventional roasting and reduction processes which yield a metal of >75% purity. Final purification in the Mond process to >99.99% purity is performed by reacting nickel and carbon monoxide to form nickel carbonyl. This gas is passed into a large chamber at a higher temperature in which tens of thousands of nickel spheres are maintained in constant motion. The nickel carbonyl decomposes depositing pure nickel onto the nickel spheres (known as pellets). Alternatively, the nickel carbonyl may be decomposed in a smaller chamber without pellets present to create fine powders. The resultant carbon monoxide is re-circulated through the process. The highly pure nickel produced by this process is known as carbonyl nickel. A second common form of refining involves the leaching of the metal matte followed by the electro-winning of the nickel from solution by plating it onto a cathode. In many stainless steel applications, the nickel can be taken directly in the 75% purity form, depending on the presence of any impurities.

The largest producer of nickel is Russia which extracts 267,000 tonnes of nickel per year. Australia and Canada (particularly the Sudbury Basin) are the second and third largest producers, making 207 and 189.3 thousand tonnes per year. [4]



See also nickel compounds.



Naturally occurring nickel is composed of 5 stable isotopes; 58Ni, 60Ni, 61Ni, 62Ni and 64Ni with 58Ni being the most abundant (68.077% natural abundance). 18 radioisotopes have been characterised with the most stable being 59Ni with a half-life of 76,000 years, 63Ni with a half-life of 100.1 years, and 56Ni with a half-life of 6.077 days. All of the remaining radioactive isotopes have half-lifes that are less than 60 hours and the majority of these have half lifes that are less than 30 seconds. This element also has 1 meta state.

Nickel-56 is produced in large quantities in type Ia supernovae and the shape of the light curve of these supernovae corresponds to the decay of nickel-56 to cobalt-56 and then to iron-56.

Nickel-59 is a long-lived cosmogenic radionuclide with a half-life of 76,000 years. 59Ni has found many applications in isotope geology. 59Ni has been used to date the terrestrial age of meteorites and to determine abundances of extraterrestrial dust in ice and sediment. Nickel-60 is the daughter product of the extinct radionuclide 60Fe (half-life = 1.5 Myr). Because the extinct radionuclide 60Fe had such a long half-life, its persistence in materials in the solar system at high enough concentrations may have generated observable variations in the isotopic composition of 60Ni. Therefore, the abundance of 60Ni present in extraterrestrial material may provide insight into the origin of the solar system and its early history.

Nickel-62 has the highest binding energy of any isotope for any element. Isotopes heavier than 62Ni cannot be formed by nuclear fusion.

Nickel-48, discovered in 1999, is the most proton-rich isotope known. With 28 protons and 20 neutrons 48Ni is "doubly magic" (like 208Pb) and therefore unusually stable [5].

The isotopes of nickel range in atomic weight from 48 amu (48-Ni) to 78 amu (78-Ni). Nickel-78's half-life was recently measured to be 110 milliseconds and is believed to be an important isotope involved in supernova nucleosynthesis of elements heavier than iron. [2]



Exposure to nickel metal and soluble compounds should not exceed 0.05 mg/cm³ in nickel equivalents per 40-hour work week. Nickel sulfide fume and dust is believed to be carcinogenic, and various other nickel compounds may be as well.

Nickel carbonyl, [Ni(CO)4], is an extremely toxic gas. The toxicity of metal carbonyls is a function of both the toxicity of a metal as well as the carbonyl's ability to give off highly toxic carbon monoxide gas, and this one is no exception. It is explosive in air.

Sensitised individuals may show an allergy to nickel affecting their skin. The amount of nickel which is allowed in products which come into contact with human skin is regulated by the European Union. In 2002 a report in the journal Nature researchers found amounts of nickel being emitted by 1 and 2 Euro coins far in excess of those standards. This is believed to be due to a galvanic reaction.



  1. Jaouen, G., Ed. Bioorganometallics: Biomolecules, Labeling, Medicine; Wiley-VCH: Weinheim, 2006
  2. Szilagyi, R. K. Bryngelson, P. A.; Maroney, M. J.; Hedman, B.; Hodgson,K. O.; Solomon, E. I."S K-Edge X-ray Absorption Spectroscopic Investigation of the Ni-Containing Superoxide Dismutase Active Site: New Structural Insight into the Mechanism" Journal of the American Chemical Society 2004, volume 126, 3018-3019.
  3. Thornalley, P. J., "Glyoxalase I--structure, function and a critical role in the enzymatic defence against glycation", Biochemical Society Transactions, 2003, 31, 1343-8.
  4. Production and consumption figures are from, The Economist: Pocket World in Figures 2005, Profile Books (2005), ISBN 1-86197-799-9
  5. W., P. (October 23, 1999). Twice-magic metal makes its debut - isotope of nickel. Science News. Retrieved on 2006-09-29.

External links

Retrieved from "http://localhost../../art/o/g.html"

This text comes from Wikipedia the free encyclopedia. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. For a complete list of contributors for a given article, visit the corresponding entry on the English Wikipedia and click on "History" . For more details about the license of an image, visit the corresponding entry on the English Wikipedia and click on the picture.