Navier–Stokes equations
Continuum mechanics  

Laws






In physics, the Navier–Stokes equations (/nævˈjeɪ
These balance equations arise from applying Isaac Newton's second law to fluid motion, together with the assumption that the stress in the fluid is the sum of a diffusing viscous term (proportional to the gradient of velocity) and a pressure term—hence describing viscous flow. The main difference between them and the simpler Euler equations for inviscid flow is that Navier–Stokes equations also factor in the Froude limit (no external field) and are not conservation equations, but rather a dissipative system, in the sense that they cannot be put into the quasilinear homogeneous form:
Navier–Stokes equations are useful because they describe the physics of many phenomena of scientific and engineering interest. They may be used to model the weather, ocean currents, water flow in a pipe and air flow around a wing. The Navier–Stokes equations, in their full and simplified forms, help with the design of aircraft and cars, the study of blood flow, the design of power stations, the analysis of pollution, and many other things. Coupled with Maxwell's equations, they can be used to model and study magnetohydrodynamics.
The Navier–Stokes equations are also of great interest in a purely mathematical sense. Despite their wide range of practical uses, it has not yet been proven whether solutions always exist in three dimensions and, if they do exist, whether they are smooth – i.e. they are infinitely differentiable at all points in the domain. These are called the Navier–Stokes existence and smoothness problems. The Clay Mathematics Institute has called this one of the seven most important open problems in mathematics and has offered a US$1 million prize for a solution or a counterexample.^{[1]}^{[2]}
Flow velocity
The solution of the Navier–Stokes equations is a flow velocity. It is a field, since it is defined at every point in a region of space and an interval of time. Once the velocity field is calculated other quantities of interest, such as pressure or temperature, may be found using additional equations and relations. This is different from what one normally sees in classical mechanics, where solutions are typically trajectories of position of a particle or deflection of a continuum. Studying velocity instead of position makes more sense for a fluid; however for visualization purposes one can compute various trajectories.
General continuum equations
The Navier–Stokes momentum equation can be derived as a particular form of the Cauchy momentum equation, whose general convective form is
By setting the Cauchy stress tensor to be the sum of a viscosity term (the deviatoric stress) and a pressure term (volumetric stress) we arrive at
Cauchy momentum equation (convective form)
where
 is the convective derivative,
 is the density,
 u is the flow velocity,
 is the divergence,
 p is the pressure,
 t is time,
 is the deviatoric stress tensor, which has order two,
 g represents body accelerations acting on the continuum, for example gravity, inertial accelerations, electrostatic accelerations, and so on,
In this form, it is apparent that in the assumption of an inviscid fluid no deviatoric stress Cauchy equations reduce to the Euler equations.
Assuming conservation of mass we can use the continuity equation, to arrive to the conservation form of the equations of motion. This is often written:^{[3]}
Cauchy momentum equation (conservation form)
where ⊗ is the outer product:
The left side of the equation describes acceleration, and may be composed of timedependent and convective components (also the effects of noninertial coordinates if present). The right side of the equation is in effect a summation of hydrostatic effects, the divergence of deviatoric stress and body forces (such as gravity).
All nonrelativistic balance equations, such as the Navier–Stokes equations, can be derived by beginning with the Cauchy equations and specifying the stress tensor through a constitutive relation. By expressing the deviatoric (shear) stress tensor in terms of viscosity and the fluid velocity gradient, and assuming constant viscosity, the above Cauchy equations will lead to the Navier–Stokes equations below.
Convective acceleration
A significant feature of the Cauchy equation and consequently all other continuum equations (including Euler and Navier–Stokes) is the presence of convective acceleration: the effect of acceleration of a flow with respect to space. While individual fluid particles indeed experience timedependent acceleration, the convective acceleration of the flow field is a spatial effect, one example being fluid speeding up in a nozzle.
Compressible flow
Remark: here, the Cauchy stress tensor is denoted (instead of as it was in the general continuum equations and in the incompressible flow section).
The compressible momentum Navier–Stokes equation results from the following assumptions on the Cauchy stress tensor:^{[4]}
 the stress is Galileian invariant: it does not depend directly on the flow velocity, but only on spatial derivatives of the flow velocity. So the stress variable is the tensor gradient ∇u.
 the stress is linear in this variable: σ(∇u) = C : (∇u), where C is the fourthorder tensor representing the constant of proportionality, called the viscosity or elasticity tensor, and : is the doubledot product.
 the fluid is assumed to be isotropic, as with gases and simple liquids, and consequently V is an isotropic tensor; furthermore, since the stress tensor is symmetric, by Helmholtz decomposition it can be expressed in terms of two scalar Lamé parameters, the bulk viscosity λ and the dynamic viscosity μ, as it is usual in linear elasticity:
Linear stress constitutive equation (expression used for elastic solid)
 where I is the identity tensor, ε(∇u) ≡ 1/2∇u + 1/2(∇u)^{T} is the rateofstrain tensor and ∇ · u is the rate of expansion of the flow. So this decomposition can be explicited as:
Since the trace of the rateofstrain tensor in three dimensions is:
The trace of the stress tensor in three dimensions becomes:
So by alternatively decomposing the stress tensor into isotropic and deviatoric parts, as usual in fluid dynamics:^{[5]}
Introducing the second viscosity ζ,
we arrive to the linear constitutive equation in the form usually employed in thermal hydraulics:^{[4]}
Linear stress constitutive equation (expression used for fluids)
Both second viscosity ζ and dynamic viscosity μ need not be constant – in general, they depend on density, on each other (the viscosity is expressed in pressure), and in compressible flows also on temperature. Any equation expliciting one of these transport coefficient in the conservation variables is called an equation of state.^{[6]}
By computing the divergence of the stress tensor, since the divergence of tensor ∇u is ∇^{2}u and the divergence of tensor (∇u)^{T} is ∇(∇ · u), one finally arrives to the compressible (most general) Navier–Stokes momentum equation:^{[7]}
Navier–Stokes momentum equation (convective form)
The above equation can also be written in the form
Navier–Stokes momentum equation (convective form)
where is the material derivative. Bulk viscosity is assumed to be constant, otherwise it should not be taken out of the last derivative. The effect of the volume viscosity ζ is that the mechanical pressure is not equivalent to the thermodynamic pressure:^{[8]}
This difference is usually neglected, sometimes by explicitly assuming ζ = 0, but it could have an impact in sound absorption and attenuation and shock waves.^{[9]} The convective acceleration term can also be written as
 ,
where the vector is known as the Lamb vector.
For the special case of an incompressible flow, the pressure constrains the flow so that the volume of fluid elements is constant: isochoric flow resulting in a solenoidal velocity field with ∇ · u = 0.^{[10]}
Incompressible flow
The incompressible momentum Navier–Stokes equation results from the following assumptions on the Cauchy stress tensor:^{[4]}
 the stress is Galilean invariant: it does not depend directly on the flow velocity, but only on spatial derivatives of the flow velocity. So the stress variable is the tensor gradient ∇u.
 the fluid is assumed to be isotropic, as with gases and simple liquids, and consequently τ is an isotropic tensor; furthermore, since the deviatoric stress tensor can be expressed in terms of the dynamic viscosity μ:
Stokes' stress constitutive equation (expression used for incompressible elastic solids)
 where
 is the rateofstrain tensor. So this decomposition can be explicited as:^{[4]}
Stokes's stress constitutive equation (expression used for incompressible viscous fluids)
Dynamic viscosity μ need not be constant – in incompressible flows it can depend on density and on pressure. Any equation expliciting one of these transport coefficient in the conservative variables is called an equation of state.^{[6]}
The divergence of the deviatoric stress is given by:
because for an incompressible fluid. Incompressibility rules out density and pressure waves like sound or shock waves, so this simplification is not useful if these phenomena are of interest. The incompressible flow assumption typically holds well with all fluids at low Mach numbers (say up to about Mach 0.3), such as for modelling air winds at normal temperatures.^{[11]} For incompressible (uniform density ρ_{0}) flows the following identity holds:
where w is the specific (with the sense of per unit mass) thermodynamic work, the internal source term. Then the incompressible Navier–Stokes equations are best visualised by dividing for the density:
Incompressible Navier–Stokes equations (convective form)
where ν = μ/ρ_{0} is called the kinematic viscosity.
Velocity profile (laminar flow):
for the ydirection, simplify the Navier–Stokes equation:
Integrate twice to find the velocity profile with boundary conditions y = h, u = 0, y = −h, u = 0:
From this equation, substitute in the two boundary conditions to get two equations:
Add and solve for B:
Substitute and solve for A:
Finally this gives the velocity profile:
It is well worth observing the meaning of each term (compare to the Cauchy momentum equation):
The higherorder term, namely the shear stress divergence ∇ · τ, has simply reduced to the vector laplacian term μ∇^{2}u.^{[12]} This laplacian term can be interpreted as the difference between the velocity at a point and the mean velocity in a small surrounding volume. This implies that – for a Newtonian fluid – viscosity operates as a diffusion of momentum, in much the same way as the heat conduction. In fact neglecting the convection term, incompressible Navier–Stokes equations lead to a vector diffusion equation (namely Stokes equations), but in general the convection term is present, so incompressible Navier–Stokes equations belong to the class of convectiondiffusion equations.
In the usual case of an external field being a conservative field:
by defining the hydraulic head:
one can finally condense the whole source in one term, arriving to the incompressible Navier–Stokes equation with conservative external field:
The incompressible Navier–Stokes equations with conservative external field is the fundamental equation of hydraulics. The domain for these equations is commonly a 3 or less Euclidean space, for which an orthogonal coordinate reference frame is usually set to explicit the system of scalar partial differential equations to be solved. In 3D orthogonal coordinate systems are 3: Cartesian, cylindrical, and spherical. Expressing the Navier–Stokes vector equation in Cartesian coordinates is quite straightforward and not much influenced by the number of dimensions of the euclidean space employed, and this is the case also for the firstorder terms (like the variation and convection ones) also in noncartesian orthogonal coordinate systems. But for the higher order terms (the two coming from the divergence of the deviatoric stress that distinguish Navier–Stokes equations from Euler equations) some tensor calculus is required for deducing an expression in noncartesian orthogonal coordinate systems.
The incompressible Navier–Stokes equation is composite, the sum of two orthogonal equations,
where Π^{S} and Π^{I} are solenoidal and irrotational projection operators satisfying Π^{S} + Π^{I} = 1 and f^{S} and f^{I} are the nonconservative and conservative parts of the body force. This result follows from the Helmholtz Theorem (also known as the fundamental theorem of vector calculus). The first equation is a pressureless governing equation for the velocity, while the second equation for the pressure is a functional of the velocity and is related to the pressure Poisson equation.
The explicit functional form of the projection operator in 3D is found from the Helmholtz Theorem:
with a similar structure in 2D. Thus the governing equation is an integrodifferential equation similar to Coulomb and BiotSavart law, not convenient for numerical computation.
An equivalent weak or variational form of the equation, proved to produce the same velocity solution as the Navier–Stokes equation,^{[13]} is given by,
for divergencefree test functions w satisfying appropriate boundary conditions. Here, the projections are accomplished by the orthogonality of the solenoidal and irrotational function spaces. The discrete form of this is eminently suited to finite element computation of divergencefree flow, as we shall see in the next section. There one will be able to address the question "How does one specify pressuredriven (Poiseuille) problems with a pressureless governing equation?".
The absence of pressure forces from the governing velocity equation demonstrates that the equation is not a dynamic one, but rather a kinematic equation where the divergencefree condition serves the role of a conservation equation. This all would seem to refute the frequent statements that the incompressible pressure enforces the divergencefree condition.
Discrete velocity
With partitioning of the problem domain and defining basis functions on the partitioned domain, the discrete form of the governing equation is,
It is desirable to choose basis functions which reflect the essential feature of incompressible flow – the elements must be divergencefree. While the velocity is the variable of interest, the existence of the stream function or vector potential is necessary by the Helmholtz Theorem. Further, to determine fluid flow in the absence of a pressure gradient, one can specify the difference of stream function values across a 2D channel, or the line integral of the tangential component of the vector potential around the channel in 3D, the flow being given by Stokes' Theorem. Discussion will be restricted to 2D in the following.
We further restrict discussion to continuous Hermite finite elements which have at least firstderivative degreesoffreedom. With this, one can draw a large number of candidate triangular and rectangular elements from the platebending literature. These elements have derivatives as components of the gradient. In 2D, the gradient and curl of a scalar are clearly orthogonal, given by the expressions,
Adopting continuous platebending elements, interchanging the derivative degreesoffreedom and changing the sign of the appropriate one gives many families of stream function elements.
Taking the curl of the scalar stream function elements gives divergencefree velocity elements.^{[14]}^{[15]} The requirement that the stream function elements be continuous assures that the normal component of the velocity is continuous across element interfaces, all that is necessary for vanishing divergence on these interfaces.
Boundary conditions are simple to apply. The stream function is constant on noflow surfaces, with noslip velocity conditions on surfaces. Stream function differences across open channels determine the flow. No boundary conditions are necessary on open boundaries, though consistent values may be used with some problems. These are all Dirichlet conditions.
The algebraic equations to be solved are simple to set up, but of course are nonlinear, requiring iteration of the linearized equations.
Similar considerations apply to threedimensions, but extension from 2D is not immediate because of the vector nature of the potential, and there exists no simple relation between the gradient and the curl as was the case in 2D.
Pressure recovery
Recovering pressure from the velocity field is easy. The discrete weak equation for the pressure gradient is,
where the test/weight functions are irrotational. Any conforming scalar finite element may be used. However, the pressure gradient field may also be of interest. In this case one can use scalar Hermite elements for the pressure. For the test/weight functions g_{i} one would choose the irrotational vector elements obtained from the gradient of the pressure element.
Noninertial frame of reference
The rotating frame of reference introduces some interesting pseudoforces into the equations through the material derivative term. Consider a stationary inertial frame of reference K, and a noninertial frame of reference K', which is translating with velocity and rotating with angular velocity with respect to the stationary frame. The NavierStokes equation observed from the noninertial frame then becomes
Navier–Stokes momentum equation in noninertial frame
Here and are measured in the noninertial frame. The first term in the parenthesis represents Coriolis acceleration, the second term is due to centripetal accleration, the third is due to the linear acceleration of K' with respect to K and the fourth term is due to the angular acceleration of K' with respect to K.
Other equations
The Navier–Stokes equations are strictly a statement of the balance of momentum. To fully describe fluid flow, more information is needed, how much depending on the assumptions made. This additional information may include boundary data (noslip, capillary surface, etc.), conservation of mass, balance of energy, and/or an equation of state.
Continuity equation for incompressible fluid
Regardless of the flow assumptions, a statement of the conservation of mass is generally necessary. This is achieved through the mass continuity equation, given in its most general form as:
or, using the substantive derivative:
In the example below we can assume to have a Newtonian fluid as well as having ρ and μ both be constant.
Recall that mass continuity is simply the summation of the rate of mass in and the rate of mass out.
 rate of mass accumulated = rate of mass in − rate of mass out
Since there is no change in density ρ over time, ∂ρ/∂t = 0, we have:
Recall that ρ is a constant thus proving the divergence theorem above.
Stream function for 2D equations
Taking the curl of the Navier–Stokes equation results in the elimination of pressure. This is especially easy to see if 2D Cartesian flow is assumed (like in the degenerate 3D case with u_{z} = 0 and no dependence of anything on z), where the equations reduce to:
Differentiating the first with respect to y, the second with respect to x and subtracting the resulting equations will eliminate pressure and any conservative force. Defining the stream function ψ through
results in mass continuity being unconditionally satisfied (given the stream function is continuous), and then incompressible Newtonian 2D momentum and mass conservation condense into one equation:
where ∇^{4} is the 2D biharmonic operator and ν is the kinematic viscosity, ν = μ/ρ. We can also express this compactly using the Jacobian determinant:
This single equation together with appropriate boundary conditions describes 2D fluid flow, taking only kinematic viscosity as a parameter. Note that the equation for creeping flow results when the left side is assumed zero.
In axisymmetric flow another stream function formulation, called the Stokes stream function, can be used to describe the velocity components of an incompressible flow with one scalar function.
The incompressible Navier–Stokes equation is a differential algebraic equation, having the inconvenient feature that there is no explicit mechanism for advancing the pressure in time. Consequently, much effort has been expended to eliminate the pressure from all or part of the computational process. The stream function formulation eliminates the pressure but only in two dimensions and at the expense of introducing higher derivatives and elimination of the velocity, which is the primary variable of interest.
Properties
Nonlinearity
The Navier–Stokes equations are nonlinear partial differential equations in the general case and so remain in almost every real situation.^{[16]}^{[17]} In some cases, such as onedimensional flow and Stokes flow (or creeping flow), the equations can be simplified to linear equations. The nonlinearity makes most problems difficult or impossible to solve and is the main contributor to the turbulence that the equations model.
The nonlinearity is due to convective acceleration, which is an acceleration associated with the change in velocity over position. Hence, any convective flow, whether turbulent or not, will involve nonlinearity. An example of convective but laminar (nonturbulent) flow would be the passage of a viscous fluid (for example, oil) through a small converging nozzle. Such flows, whether exactly solvable or not, can often be thoroughly studied and understood.^{[18]}
Turbulence
Turbulence is the timedependent chaotic behavior seen in many fluid flows. It is generally believed that it is due to the inertia of the fluid as a whole: the culmination of timedependent and convective acceleration; hence flows where inertial effects are small tend to be laminar (the Reynolds number quantifies how much the flow is affected by inertia). It is believed, though not known with certainty, that the Navier–Stokes equations describe turbulence properly.^{[19]}
The numerical solution of the Navier–Stokes equations for turbulent flow is extremely difficult, and due to the significantly different mixinglength scales that are involved in turbulent flow, the stable solution of this requires such a fine mesh resolution that the computational time becomes significantly infeasible for calculation or direct numerical simulation. Attempts to solve turbulent flow using a laminar solver typically result in a timeunsteady solution, which fails to converge appropriately. To counter this, timeaveraged equations such as the Reynoldsaveraged Navier–Stokes equations (RANS), supplemented with turbulence models, are used in practical computational fluid dynamics (CFD) applications when modeling turbulent flows. Some models include the Spalart–Allmaras, k–ω, k–ε, and SST models, which add a variety of additional equations to bring closure to the RANS equations. Large eddy simulation (LES) can also be used to solve these equations numerically. This approach is computationally more expensive—in time and in computer memory—than RANS, but produces better results because it explicitly resolves the larger turbulent scales.
Applicability
Together with supplemental equations (for example, conservation of mass) and well formulated boundary conditions, the Navier–Stokes equations seem to model fluid motion accurately; even turbulent flows seem (on average) to agree with real world observations.
The Navier–Stokes equations assume that the fluid being studied is a continuum (it is infinitely divisible and not composed of particles such as atoms or molecules), and is not moving at relativistic velocities. At very small scales or under extreme conditions, real fluids made out of discrete molecules will produce results different from the continuous fluids modeled by the Navier–Stokes equations. For example, capillarity of internal layers in fluids appears for flow with high gradients.^{[20]} For large Knudsen number of the problem, the Boltzmann equation may be a suitable replacement.^{[21]} Failing that, one may have to resort to molecular dynamics or various hybrid methods.^{[22]}
Another limitation is simply the complicated nature of the equations. Timetested formulations exist for common fluid families, but the application of the Navier–Stokes equations to less common families tends to result in very complicated formulations and often to open research problems. For this reason, these equations are usually rewritten for Newtonian fluids where the viscosity model is linear; truly general models for the flow of other kinds of fluids (such as blood) do not exist.^{[23]}
Application to specific problems
The Navier–Stokes equations, even when written explicitly for specific fluids, are rather generic in nature and their proper application to specific problems can be very diverse. This is partly because there is an enormous variety of problems that may be modeled, ranging from as simple as the distribution of static pressure to as complicated as multiphase flow driven by surface tension.
Generally, application to specific problems begins with some flow assumptions and initial/boundary condition formulation, this may be followed by scale analysis to further simplify the problem.
Parallel flow
Assume steady, parallel, one dimensional, nonconvective pressuredriven flow between parallel plates, the resulting scaled (dimensionless) boundary value problem is:
The boundary condition is the no slip condition. This problem is easily solved for the flow field:
From this point onward more quantities of interest can be easily obtained, such as viscous drag force or net flow rate.
Radial flow
Difficulties may arise when the problem becomes slightly more complicated. A seemingly modest twist on the parallel flow above would be the radial flow between parallel plates; this involves convection and thus nonlinearity. The velocity field may be represented by a function f(z) that must satisfy:
This ordinary differential equation is what is obtained when the Navier–Stokes equations are written and the flow assumptions applied (additionally, the pressure gradient is solved for). The nonlinear term makes this a very difficult problem to solve analytically (a lengthy implicit solution may be found which involves elliptic integrals and roots of cubic polynomials). Issues with the actual existence of solutions arise for R > 1.41 (approximately; this is not √2), the parameter R being the Reynolds number with appropriately chosen scales.^{[24]} This is an example of flow assumptions losing their applicability, and an example of the difficulty in "high" Reynolds number flows.^{[24]}
Convection
A type of natural convection which can be described by the Navier–Stokes equation is the Rayleigh–Bénard convection. It is one of the most commonly studied convection phenomena because of its analytical and experimental accessibility.
Exact solutions of the Navier–Stokes equations
Some exact solutions to the Navier–Stokes equations exist. Examples of degenerate cases — with the nonlinear terms in the Navier–Stokes equations equal to zero — are Poiseuille flow, Couette flow and the oscillatory Stokes boundary layer. But also more interesting examples, solutions to the full nonlinear equations, exist such as Jeffery–Hamel flow, Von Kármán swirling flow, Stagnation point flow, Landau–Squire jet, Taylor–Green vortex.^{[25]}^{[26]}^{[27]} Note that the existence of these exact solutions does not imply they are stable: turbulence may develop at higher Reynolds numbers.
Under additional assumptions, the component parts can be separated.^{[28]}
For example, in the case of an unbounded planar domain with twodimensional — incompressible and stationary — flow in polar coordinates (r,φ), the velocity components (u_{r},u_{φ}) and pressure p are:^{[29]}
where A and B are arbitrary constants. This solution is valid in the domain r ≥ 1 and for A < −2ν.
In Cartesian coordinates, when the viscosity is zero (ν = 0), this is:
For example, in the case of an unbounded Euclidean domain with threedimensional — incompressible, stationary and with zero viscosity (ν = 0) — radial flow in Cartesian coordinates (x,y,z), the velocity vector v and pressure p are:
There is a singularity at .
A threedimensional steadystate vortex solution
A steadystate example with no singularities comes from considering the flow along the lines of a Hopf fibration. Let r be a constant radius of the inner coil. One set of solutions is given by:^{[30]}
for arbitrary constants A and B. This is a solution in a nonviscous gas (compressible fluid) whose density, velocities and pressure goes to zero far from the origin. (Note this is not a solution to the Clay Millennium problem because that refers to incompressible fluids where ρ is a constant, neither does it deal with the uniqueness of the Navier–Stokes equations with respect to any turbulence properties.) It is also worth pointing out that the components of the velocity vector are exactly those from the Pythagorean quadruple parametrization. Other choices of density and pressure are possible with the same velocity field:
Another choice of pressure and density with the same velocity vector above is one where the pressure and density fall to zero at the origin and are highest in the central loop at z = 0, x^{2} + y^{2} = r^{2}:
In fact in general there are simple solutions for any polynomial function f where the density is:
Wyld diagrams
Wyld diagrams are bookkeeping graphs that correspond to the Navier–Stokes equations via a perturbation expansion of the fundamental continuum mechanics. Similar to the Feynman diagrams in quantum field theory, these diagrams are an extension of Keldysh's technique for nonequilibrium processes in fluid dynamics. In other words, these diagrams assign graphs to the (often) turbulent phenomena in turbulent fluids by allowing correlated and interacting fluid particles to obey stochastic processes associated to pseudorandom functions in probability distributions.^{[31]}
Representations in 3D
From the general form of the Navier–Stokes, with the velocity vector expanded as u = (u_{x},u_{y},u_{z}), sometimes respectively named u, v, w, we may write the vector equation explicitly,
Note that gravity has been accounted for as a body force, and the values of g_{x}, g_{y}, g_{z} will depend on the orientation of gravity with respect to the chosen set of coordinates.
The continuity equation reads:
When the flow is incompressible, ρ does not change for any fluid particle, and its material derivative vanishes: Dρ/Dt = 0. The continuity equation is reduced to:
Thus, for the incompressible version of the Navier–Stokes equation the second part of the viscous terms fall away (see Incompressible flow).
This system of four equations comprises the most commonly used and studied form. Though comparatively more compact than other representations, this is still a nonlinear system of partial differential equations for which solutions are difficult to obtain.
A change of variables on the Cartesian equations will yield^{[11]} the following momentum equations for r, φ, and z^{[32]}
The gravity components will generally not be constants, however for most applications either the coordinates are chosen so that the gravity components are constant or else it is assumed that gravity is counteracted by a pressure field (for example, flow in horizontal pipe is treated normally without gravity and without a vertical pressure gradient). The continuity equation is:
This cylindrical representation of the incompressible Navier–Stokes equations is the second most commonly seen (the first being Cartesian above). Cylindrical coordinates are chosen to take advantage of symmetry, so that a velocity component can disappear. A very common case is axisymmetric flow with the assumption of no tangential velocity (u_{φ} = 0), and the remaining quantities are independent of φ:
In spherical coordinates, the r, φ, and θ momentum equations are^{[11]} (note the convention used: θ is polar angle, or colatitude,^{[33]} 0 ≤ θ ≤ π):
Mass continuity will read:
These equations could be (slightly) compacted by, for example, factoring 1/r^{2} from the viscous terms. However, doing so would undesirably alter the structure of the Laplacian and other quantities.
Navier–Stokes equations use in games
The Navier–Stokes equations are used extensively in video games in order to model a wide variety of natural phenomena. Simulations of smallscale gaseous fluids, such as fire and smoke, are often based on the seminal paper "RealTime Fluid Dynamics for Games"^{[34]} by Jos Stam, which elaborates one of the methods proposed in Stam's earlier, more famous paper "Stable Fluids"^{[35]} from 1999. Stam proposes stable fluid simulation using a Navier–Stokes solution method from 1968, coupled with an unconditionally stable semiLagrangian advection scheme, as first proposed in 1992.
More recent implementations based upon this work run on the game systems graphics processing unit (GPU) as opposed to the central processing unit (CPU) and achieve a much higher degree of performance.^{[36]}^{[37]} Many improvements have been proposed to Stam's original work, which suffers inherently from high numerical dissipation in both velocity and mass.
An introduction to interactive fluid simulation can be found in the 2007 ACM SIGGRAPH course, Fluid Simulation for Computer Animation.^{[38]}
Navier–Stokes equations in Popular Culture
The movie Gifted includes a brief view of a headline that Mary's mother Diane Adler was working to be the first to solve Navier–Stokes equations. Later the movie reveals that Adler indeed solved the equations with a mathematical proof.
See also
 Adhémar Jean Claude Barré de SaintVenant
 Bogoliubov–Born–Green–Kirkwood–Yvon hierarchy of equations
 Boltzmann equation
 Cauchy momentum equation
 Cauchy stress tensor
 Convection–diffusion equation
 Chapman–Enskog theory
 Churchill–Bernstein equation
 Coandă effect
 Computational fluid dynamics
 Continuum mechanics
 Euler equations
 Hagen–Poiseuille flow from the Navier–Stokes equations
 Derivation of the Navier–Stokes equations
 EinsteinStokes equation
 Nondimensionalization and scaling of the Navier–Stokes equations
 Pressurecorrection method
 Rayleigh–Bénard convection
 Stokes equations
 Reynolds transport theorem
 Vlasov equation
 Millennium Prize Problems
Notes
 ↑ "Millennium Prize Problems—Navier–Stokes Equation", claymath.org, Clay Mathematics Institute, March 27, 2017, retrieved 20170402
 ↑ Fefferman, Charles L. "Existence and smoothness of the Navier–Stokes equation" (PDF). claymath.org. Clay Mathematics Institute. Retrieved 20170402.
 ↑ Batchelor (1967) pp. 137 & 142.
 1 2 3 4 Batchelor (1967) pp. 142–148.
 ↑ Chorin, Alexandre E.; Marsden, Jerrold E. (1993). A Mathematical Introduction to Fluid Mechanics. p. 33.
 1 2 Batchelor (1967) p. 165.
 ↑ Batchelor (1967) pp. 147 & 154.
 ↑ Landau & Lifshitz (1987) pp. 44–45, 196
 ↑ White (2006) p. 67.
 ↑ Batchelor (1967) p. 75.
 1 2 3 See Acheson (1990).
 ↑ Batchelor (1967) pp. 21 & 147.
 ↑ Temam, Roger (2001), Navier–Stokes Equations, Theory and Numerical Analysis, AMS Chelsea, pp. 107–112
 ↑ Holdeman, J. T. (2010), "A Hermite finite element method for incompressible fluid flow", Int. J. Numer. Meth. Fluids, 64 (4): 376–408, Bibcode:2010IJNMF..64..376H, doi:10.1002/fld.2154
 ↑ Holdeman, J. T.; Kim, J. W. (2010), "Computation of incompressible thermal flows using Hermite finite elements", Comput. Meth. Appl. Mech. Eng., 199 (49–52): 3297–3304, Bibcode:2010CMAME.199.3297H, doi:10.1016/j.cma.2010.06.036
 ↑ Fluid Mechanics (Schaum's Series), M. Potter, D.C. Wiggert, Schaum's Outlines, McGrawHill (USA), 2008, ISBN 9780071487818
 ↑ Vectors, Tensors, and the basic Equations of Fluid Mechanics, R. Aris, Dover Publications, 1989, ISBN 0486661105
 ↑ McGraw Hill Encyclopaedia of Physics (2nd Edition), C.B. Parker, 1994, ISBN 0070514003
 ↑ Encyclopaedia of Physics (2nd Edition), R.G. Lerner, G.L. Trigg, VHC publishers, 1991, ISBN (Verlagsgesellschaft) 3527269541, ISBN (VHC Inc.) 0895737523
 ↑ Gorban, A.N.; Karlin, I. V. (2016), "Beyond Navier–Stokes equations: capillarity of ideal gas", Contemporary Physics (Review article), 58 (1): 70–90, arXiv:1702.00831, Bibcode:2017ConPh..58...70G, doi:10.1080/00107514.2016.1256123
 ↑ Cercignani, C. (2002), "The Boltzmann equation and fluid dynamics", in Friedlander, S.; Serre, D., Handbook of mathematical fluid dynamics, 1, Amsterdam: NorthHolland, pp. 1–70, ISBN 9780444503305 ;
 ↑ Nie, X.B.; Chen, S.Y.; Robbins, M.O. (2004), "A continuum and molecular dynamics hybrid method for microand nanofluid flow", Journal of Fluid Mechanics (Research article), 500: 55–64, Bibcode:2004JFM...500...55N, doi:10.1017/S0022112003007225
 ↑ Öttinger, H.C. (2012), Stochastic processes in polymeric fluids, Berlin, Heidelberg: Springer Science & Business Media, doi:10.1007/9783642582905 (inactive 20180923), ISBN 9783540583530
 1 2 Shah, Tasneem Mohammad (1972). "Analysis of the multigrid method". Nasa Sti/recon Technical Report N. 91: 23418. Bibcode:1989STIN...9123418S.
 ↑ Wang, C. Y. (1991), "Exact solutions of the steadystate Navier–Stokes equations", Annual Review of Fluid Mechanics, 23: 159–177, Bibcode:1991AnRFM..23..159W, doi:10.1146/annurev.fl.23.010191.001111
 ↑ Landau & Lifshitz (1987) pp. 75–88.
 ↑ Ethier, C. R.; Steinman, D. A. (1994), "Exact fully 3D Navier–Stokes solutions for benchmarking", International Journal for Numerical Methods in Fluids, 19 (5): 369–375, Bibcode:1994IJNMF..19..369E, doi:10.1002/fld.1650190502
 ↑
 ↑ Ladyzhenskaya, O. A. (1969), The Mathematical Theory of viscous Incompressible Flow (2nd ed.), p. preface, xi
 ↑ Kamchatno, A. M. (1982), Topological solitons in magnetohydrodynamics (PDF)
 ↑ McComb, W. D. (2008), Renormalization methods: A guide for beginners, Oxford University Press, pp. 121–128, ISBN 9780199236527
 ↑ de' Michieli Vitturi, Mattia, Navier–Stokes equations in cylindrical coordinates, retrieved 20161226
 ↑ Eric W. Weisstein (20051026), Spherical Coordinates, MathWorld, retrieved 20080122
 ↑ Stam, Jos (2003), RealTime Fluid Dynamics for Games (PDF)
 ↑ Stam, Jos (1999), Stable Fluids (PDF)
 ↑ Harris, Mark J. (2004), "38", GPUGems  Fast Fluid Dynamics Simulation on the GPU
 ↑ Sander, P.; Tatarchuck, N.; Mitchell, J.L. (2007), "9.6", ShaderX5  Explicit EarlyZ Culling for Efficient Fluid Flow Simulation, pp. 553–564
 ↑ Robert Bridson; Matthias MüllerFischer. "Fluid Simulation for Computer Animation". www.cs.ubc.ca.
References
 Acheson, D. J. (1990), Elementary Fluid Dynamics, Oxford Applied Mathematics and Computing Science Series, Oxford University Press, ISBN 9780198596790
 Batchelor, G. K. (1967), An Introduction to Fluid Dynamics, Cambridge University Press, ISBN 9780521663960
 Landau, L. D.; Lifshitz, E. M. (1987), Fluid mechanics, Course of Theoretical Physics, 6 (2nd revised ed.), Pergamon Press, ISBN 9780080339320, OCLC 15017127
 Rhyming, Inge L. (1991), Dynamique des fluides, Presses polytechniques et universitaires romandes
 Polyanin, A. D.; Kutepov, A. M.; Vyazmin, A. V.; Kazenin, D. A. (2002), Hydrodynamics, Mass and Heat Transfer in Chemical Engineering, Taylor & Francis, London, ISBN 9780415272377
 Currie, I. G. (1974), Fundamental Mechanics of Fluids, McGrawHill, ISBN 9780070150003
 V. Girault and P.A. Raviart. Finite Element Methods for Navier–Stokes Equations: Theory and Algorithms. Springer Series in Computational Mathematics. SpringerVerlag, 1986.
 White, Frank M. (2006), Viscous Fluid Flow, McGrawHill, ISBN 9780071244930
 Smits, Alexander J. (2014), A Physical Introduction to Fluid Mechanics, Wiley, ISBN 0471253499
 Roger Temam (1984): "Navier–Stokes Equations: Theory and Numerical Analysis", ACM Chelsea Publishing, ISBN 9780821827376
External links
 Simplified derivation of the Navier–Stokes equations
 Threedimensional unsteady form of the Navier–Stokes equations Glenn Research Center, NASA