Maya numerals
The Mayan numeral system was the system to represent numbers and calendar dates in the Maya civilization. It was a vigesimal (base20) positional numeral system. The numerals are made up of three symbols; zero (shell shape, with the plastron uppermost), one (a dot) and five (a bar). For example, thirteen is written as three dots in a horizontal row above two horizontal bars; sometimes it is also written as three vertical dots to the left of two vertical bars. With these three symbols each of the twenty vigesimal digits could be written.
400s 

 
20s 



1s 



33  429  5125 
Numbers after 19 were written vertically in powers of twenty. The Mayan used powers of twenty, just as our Hindu–Arabic numeral system uses powers of tens.^{[1]} For example, thirtythree would be written as one dot, above three dots atop two bars. The first dot represents "one twenty" or "1×20", which is added to three dots and two bars, or thirteen. Therefore, (1×20) + 13 = 33. Upon reaching 20^{2} or 400, another row is started (20^{3} or 8000, then 20^{4} or 160,000, and so on). The number 429 would be written as one dot above one dot above four dots and a bar, or (1×20^{2}) + (1×20^{1}) + 9 = 429.
Other than the bar and dot notation, Maya numerals were sometimes illustrated by face type glyphs or pictures. The face glyph for a number represents the deity associated with the number. These face number glyphs were rarely used, and are mostly seen on some of the most elaborate monumental carving.
Numeral systems 

Hindu–Arabic numeral system 
East Asian 
Alphabetic 
Former 
Positional systems by base 
Nonstandard positional numeral systems 
List of numeral systems 
Addition and subtraction
Adding and subtracting numbers below 20 using Maya numerals is very simple.
Addition is performed by combining the numeric symbols at each level:
If five or more dots result from the combination, five dots are removed and replaced by a bar. If four or more bars result, four bars are removed and a dot is added to the next higher row.
Similarly with subtraction, remove the elements of the subtrahend symbol from the minuend symbol:
If there are not enough dots in a minuend position, a bar is replaced by five dots. If there are not enough bars, a dot is removed from the next higher minuend symbol in the column and four bars are added to the minuend symbol which is being worked on.
Modified vigesimal system in the Maya calendar
The "Long Count" portion of the Maya calendar uses a variation on the strictly vigesimal numbering. In the second position, only the digits up to 17 are used, and the place value of the third position is not 20×20 = 400, as would otherwise be expected, but 18×20 = 360, so that one dot over two zeros signifies 360. Presumably, this is because 360 is roughly the number of days in a year. (The Maya had however a quite accurate estimation of 365.2422 days for the solar year at least since the early Classic era.)^{[2]} Subsequent positions use all twenty digits and the place values continue as 18×20×20 = 7,200 and 18×20×20×20 = 144,000, etc.
Every known example of large numbers in the Maya system uses this 'modified vigesimal' system, with the third position representing multiples of 18×20. It is reasonable to assume, but not proven by any evidence, that the normal system in use was a pure base20 system.
Origins
Several Mesoamerican cultures used similar numerals and basetwenty systems and the Mesoamerican Long Count calendar requiring the use of zero as a placeholder. The earliest long count date (on Stela 2 at Chiapa de Corzo, Chiapas) is from 36 BC.^{[3]}
Since the eight earliest Long Count dates appear outside the Maya homeland,^{[4]} it is assumed that the use of zero and the Long Count calendar predated the Maya, and was possibly the invention of the Olmec. Indeed, many of the earliest Long Count dates were found within the Olmec heartland. However, the Olmec civilization had come to an end by the 4th century BC, several centuries before the earliest known Long Count dates—which suggests that zero was not an Olmec discovery.
Unicode
Mayan numerals were added to the Unicode Standard in June, 2018 with the release of version 11.0.
The Unicode block for Mayan Numerals is U+1D2E0–U+1D2FF:
Mayan Numerals^{[1]}^{[2]} Official Unicode Consortium code chart (PDF)  
0  1  2  3  4  5  6  7  8  9  A  B  C  D  E  F  
U+1D2Ex  𝋠  𝋡  𝋢  𝋣  𝋤  𝋥  𝋦  𝋧  𝋨  𝋩  𝋪  𝋫  𝋬  𝋭  𝋮  𝋯 
U+1D2Fx  𝋰  𝋱  𝋲  𝋳  
Notes 
References
 ↑ Saxakali (1997). "Maya Numerals". Archived from the original on 20060714. Retrieved 20060729.
 ↑ Kallen, Stuart A. (1955). The Mayans. San Diego, CA: Lucent Books, Inc. p. 56. ISBN 1560067578.
 ↑ No long count date actually using the number 0 has been found before the 3rd century BC, but since the long count system would make no sense without some placeholder, and since Mesoamerican glyphs do not typically leave empty spaces, these earlier dates are taken as indirect evidence that the concept of 0 already existed at the time.
 ↑ Diehl, Richard (2004). The Olmecs: America's First Civilization. London: Thames & Hudson. p. 186. ISBN 0500021198. OCLC 56746987.
Further reading
 Coe, Michael D. (1987). The Maya (4th edition (revised) ed.). London; New York: Thames & Hudson. ISBN 050027455X. OCLC 15895415.
 Díaz Díaz, Ruy (December 2006). "Apuntes sobre la aritmética Maya" (online reproduction). Educere (in Spanish). Táchira, Venezuela: Universidad de los Andes. 10 (35): 621–627. ISSN 13164910. OCLC 66480251.
 Thompson, J. Eric S. (1971). Maya Hieroglyphic ting; An Introduction. Civilization of the American Indian Series, No. 56 (3rd ed.). Norman: University of Oklahoma Press. ISBN 0806104473. OCLC 275252.
External links
Wikimedia Commons has media related to Maya numerals. 
 Maya Mathematics  online converter from decimal numeration to Maya numeral notation.
 Anthropomorphic Maya numbers  online story of number representations.